US009330227B1

a2z United States Patent (10) Patent No.: US 9,330,227 B1
Han et al. 45) Date of Patent: May 3, 2016
(54) TESTBENCH BUILDER, SYSTEM, DEVICE (52) US.CL
AND METHOD INCLUDING A DISPATCHER CPC .o GO6F 17/5081 (2013.01)
(58) Field of Classification Search
(71) Applicant: XPLIANT, INC., San Jose, CA (US) CPC oo, GOG6F 17/5036; GOGF 17/5022
USPC ottt 716/136
(72) Inventors: Keqin Kenneth Han, Fremont, CA See application file for complete search history.
(US); Nimalan Siva, San Ramon, CA
(US); Mohan Balan, Santa Clara, CA (56) References Cited
(US); Saurin Patel, San Jose, CA (US)
U.S. PATENT DOCUMENTS
(73) ASSlgnee: CaVlum Inc" San Jose5 CA ([JS) 6’216’098 Bl 3k 4/2001 Clancey """"""""" G06Q 10/10
(*) Notice: Subject to any disclaimer, the term of this 703/6
patent is extended or adjusted under 35 * cited by examiner
U.S.C. 154(b) by O days. . .
Primary Examiner — Suresh Memula
(21) Appl. No.: 14/617,610 (74) Attorney, Agent, or Firm — Haverstock & Owens LLP
(22) Filed: Feb. 9, 2015 (57 ABSTRACT
A testbench for testing a device under test (DUT), wherein the
Related U.S. Application Data testbench has a verification environment including a refer-
ence model, a scoreboard and a customized agent for each
(60) Provisional application No. 62/080,174, filed on Nov. interface that the DUT needs to receive input from and/or
14, 2014, provisional application No. 62/080,158, transmit output on. The testbench system is able to be gener-
filed on Nov. 14, 2014, provisional application No. ated by a testbench builder that automatically creates a score-
62/080,214, filed on Nov. 14, 2014, provisional board, a reference model, a dispatcher and generic agents
application No. 62/080,194, filed on Nov. 14, 2014, including generic drivers, loopback ports, sequencers and/or
provisional application No. 62/080,235, filed on Nov. generic monitors for each interface and then automatically
14, 2014. customize the generic agents based on their corresponding
interface such that the agents meet the requirements of the
(51) Int.CL interface for the DUT.
GO6F 11/22 (2006.01)
GOG6F 17/50 (2006.01) 40 Claims, 14 Drawing Sheets

A monitor of an agent within the verification environment monitors
andfor samples one or more transactions transmitted on an interface
between the agent and the DUT.

2902

A

The monitor of the agent monitors a handshake on the DUT according
to a handshake protocol.

2904

A

Based on the outcome of the handshake protocol, the monitor
determines if the data is ready on the interface and/or DUT.

2906

A

The monitor communicates with the transporter to sample the
transaction if the outcome of the handshake protocol indicates the
transaction is valid.

2908

A

The monitor forwards the sampled transaction to a scoreboard or a
reference model of the verification environment.

2910

U.S. Patent May 3, 2016 Sheet 1 of 14 US 9,330,227 B1

104 :
TB Device [—
l ouT TB Build s
uilder
[2103
Fig. 1
202
test 204
env 52062
Agent1 Agent2
(send traffic to DUT) (sample data from 242
2& | DUT) r3J14]
—220
D D | S|
r r
i 5—220 i
Sequencer v Sequencer v Interface
= DUT
e e
r r 222a
216 _— 216 | |- 3
,ﬁ—‘ %—‘ 222
Monitor Monitor b
208
~
Reference Model
210
\ Y
Scoreboard

Fig. 2

U.S. Patent May 3, 2016 Sheet 2 of 14 US 9,330,227 B1

Read an interface configuration file associated with a device under
test and stored on a memory. 2302

Y

Identify one or more interfaces associated with the device under test
defined in the interface configuration file. [2-304

Y
Generate a verification environment including a base agent for each
of the interfaces in the interface configuration file, wherein the
characteristics of the base agents are predefined independent of the | £—306

interface configuration file.

\

Customizing one or more of the base agents based on interface
parameters of the interface configuration file that are associated with [_30g
the one or more of the base agents.

Y

Instantiating the customized base agents in the verification
environment. 2310

Fig. 3

U.S. Patent May 3, 2016 Sheet 3 of 14 US 9,330,227 B1

102
N
402 404 406 408 420
\"'\\ \'\‘ \"\\ \"\‘ \"‘\\
Memory
Network Processor| I/O | HW
Interface
Bus
, 103
r~ b
410 Application
Storage
/-J
412

Fig. 4

U.S. Patent May 3, 2016 Sheet 4 of 14 US 9,330,227 B1

500
Agent
g 5—506
502 Trans
\4 porter
1 212
Y A
Sequencer
> D
r
i Interface
» DUT
v
e 222
508 r [<504
A
| Monitor |

U.S. Patent May 3, 2016 Sheet 5 of 14 US 9,330,227 B1

A sequencer of an agent within the verification environment produces
a transaction for testing the DUT 2602

Y
The generic driver of the agent retrieves/receives the transaction from
the sequencer 2604

Y
The driver and the transporter of the agent perform a handshake with
the DUT according to a handshake protocol 2606

y
Based on the outcome of the handshake protocol, the driver
determines if the interface/DUT is ready to receive data 2608

Y
The driver communicates with the transporter to forward/load the
transaction on the interface if the outcome of the handshake protocol
indicates the interface/DUT is ready to receive to receive the 2610

transaction

Fig. 6

U.S. Patent

May 3, 2016

Sheet 6 of 14

7 source ready

e
P -~

Laut

destination
ready

~ -
—————————

-—— -,
- -
- -

-

data0[20:0] [

data1[11:0]

~ -
\\5— ——‘—

DUT

| pm b]

- —————]

4‘ =~

data1[11:0]

data0[20:0] [

~ -

DUT

US 9,330,227 B1

U.S. Patent

US 9,330,227 B1

May 3, 2016 Sheet 7 of 14
500 7%2 21&\
1 valid T
h Ll \
. flow control /’l
7064 S~ ét’a_rt_cgf-p-a-gk:aj [~
\ end of packet L/ DUT
data[31:0]
704
Fig. 7C
800
Agent 219
8%\ B o
5 .
r
i Interface
Sequencer o IV DUT
e 222
r
806
\A
Transporter
Monitor -
(\J

808

Fig.

8

U.S. Patent May 3, 2016 Sheet 8 of 14 US 9,330,227 B1

A monitor of an agent within the verification environment monitors
and/or samples one or more transactions transmitted on an interface 2902
between the agent and the DUT.

Y

The monitor of the agent monitors a handshake on the DUT according
to a handshake protocol. 2904

Y

Based on the outcome of the handshake protocol, the monitor
determines if the data is ready on the interface and/or DUT. 2906

Y
The monitor communicates with the transporter to sample the
transaction if the outcome of the handshake protocol indicates the 2908
transaction is valid.

¥
The monitor forwards the sampled transaction to a scoreboard or a
reference model of the verification environment. 2910

Fig. 9

U.S. Patent May 3, 2016 Sheet 9 of 14

806/804 1002 212

————— -
— ~-

.*7 source ready [~~.

’ ot \

\ destination)

. | ready iy

~J= ’//
_____ DUT
.- data1[7:0] [~~.

4 . \
/’ w N
\

Yvy ?\

1004
Monitor F—=z_-808

Fig. 10A

806/804 1002 212

- o
- -
- -~

_______ . DUT

.21 data1[70] [~~.

s« | data[31]0] e

~
-
\\ — L4
-~ ”
‘.5---——“

' Y ¥ 1004
Monitor +—=2_-808

Fig. 10B

US 9,330,227 B1

U.S. Patent May 3, 2016

806/804

|, -~

Sheet 10 of 14

——— -——

valid

~ —1

flow contllol

-

’
/

-

-
e ey R i

- -

/ start of pagket
1 -
. |end df gadket

-

I

bl O Sy PR Ll

-k

gta[3110]

B
o

Yyvyvyy

1o O I ——‘\

Monitor F—=2_-808

Fig. 10C

US 9,330,227 B1

U.S. Patent May 3, 2016 Sheet 11 of 14 US 9,330,227 B1

A~
Test
Env. 206 204

model 296 206—2_ Agent 2

L/\ 224 (send trafficN
- / S \
Reference Dispatcher 222a

or [——— (sample op 3 DUT
v from DUT) 299b
®
Scoreboard :
222a
Agent N
210 .
2067_ (send traffic
to DUT)
Fig. 11

Input data from a plurality of agents within the verification environment

with a dispatcher 21202
Y
Identify with the dispatcher whether each portion of the data is a copy
of one of one or more transactions or a device response to a 2
. 1204
transaction based on an agent table
Y
Route, with the dispatcher, each portion of data identified as a copy to
a reference model within the verification environment and each
portion of data identified as a device response to a scoreboard within 21206
the verification environment

Fig. 12

U.S. Patent May 3, 2016 Sheet 12 of 14 US 9,330,227 B1
202
test 204
Agent1 |—k Agent2 [
(send traffic to DUT) \1328 (sample data from 228 54y
214] DUT) 214 A
S ~ 220
D D
r r
i 5—220 i
Sequencer v Sequencer v Interface
» DUT
e e N
r r 222a
216 _— 216 I I
’—V\—l %—l 222
Monitor Monitor b
208
~
Reference Model
210
\ ~/
Scoreboard

Fig. 13

U.S. Patent May 3, 2016 Sheet 13 of 14 US 9,330,227 B1

Sending dependency data from an output port of loopback ports of a
first agent to an input port of loopback ports of a second agent within 21402
the verification environment.

Y
Polling the input loopback port of the second agent for the
dependency data with a sequencer of the second agent. 21404

Y

Producing dependent testing data for testing the device under test
based on the dependency dat;ﬂg\g/:th the sequencer of the second 21406

Y
Receiving the dependent testing data from the sequencer and
sending the dependent testing data to the device under test with a 21408
driver of the second agent.

Fig. 14

U.S. Patent May 3, 2016 Sheet 14 of 14 US 9,330,227 B1

Outputting the testing data to or Inputting the testing data from the
device under test with an first agent via an interface coupling the first 21502
agent to the device under test

Y
Sampling testing data on the interface between the device under test
and the first agent with a monitor of the first agent 21504

Y
Generating a timestamp for the testing data with the monitor 2_1508

Fig. 15

US 9,330,227 B1

1

TESTBENCH BUILDER, SYSTEM, DEVICE
AND METHOD INCLUDING A DISPATCHER

RELATED APPLICATIONS

This application claims priority under 35 U.S.C. §119(e) of
the U.S. provisional patent application Ser. No. 62/080,174,
filed Nov. 14, 2014, and titled “TESTBENCH BUILDER,
SYSTEM, DEVICE AND METHOD INCLUDING A
GENERIC DRIVER AND TRANSPORTER,” the U.S. pro-
visional patent application Ser. No. 62/080,158, filed Nov. 14,
2014, and titled “TESTBENCH BUILDER, SYSTEM,
DEVICE AND METHOD,” the U.S. provisional patent appli-
cation Ser. No. 62/080,214, filed Nov. 14, 2014, and titled
“TESTBENCH BUILDER, SYSTEM, DEVICE AND
METHOD INCLUDING A DISPATCHER,” the U.S. provi-
sional patent application Ser. No. 62/080,194, filed Nov. 14,
2014, and titled “TESTBENCH BUILDER, SYSTEM,
DEVICE AND METHOD INCLUDING A GENERIC
MONITOR AND TRANSPORTER,” and the U.S. provi-
sional patent application Ser. No. 62/080,235, filed Nov. 14,
2014, and titled “TESTBENCH BUILDER, SYSTEM,
DEVICE AND METHOD HAVING AGENT LOOPBACK
FUNCTIONALITY;” all of which are hereby incorporated by
reference.

FIELD OF INVENTION

The present invention relates to testbenches. More particu-
larly, the present invention relates to an automatic testbench
builder.

BACKGROUND OF THE INVENTION

When developing components for integration into a sys-
tem, a number of test procedures are typically performed to
ensure that the component will operate in the desired manner
when integrated into the system. The development of a hard-
ware component (also referred to herein as a device) typically
takes place in a number of stages. Firstly, the functional
operation/behavior of the component is defined, for example
using a Register Transfer Language (RTL). Two popular
RTLs used are VHDL and Verilog. In addition, prior to per-
forming such RTL coding, a behavioral model may be built
using a UML™ (Universal Modeling [.anguage) to validate at
a transactional level that the design intent is correct. Once an
RTL representation of the hardware component has been
developed, this is then synthesised into a sequence of hard-
ware elements using any of a number of known synthesising
tools. The result of the synthesis is a hardware design that can
then be used to produce the actual hardware component, for
example using appropriate fabrication of the component on
silicon. It is costly to perform test procedures on the compo-
nent once it has been reduced to hardware. Thus, testing of the
RTL representation of the component is typically performed
to ensure that the actual hardware generated from that RTL
representation will operate correctly.

Such testing of the RTL representation typically involves
the use of a testbench model providing a test environment for
the RTL representation of the component, which is then run
on a simulation tool to produce test results which can be
analyzed to determine whether the RTL representation of the
component is operating as required. The testbench can be
formed in a variety of ways. For example, the testbench could
be formed to provide a test environment for testing the RTL
representation of the component in isolation, which enables
direct control of the input stimuli to the RTL representation of

25

35

40

45

2

the component. However, this requires a particular testbench
to be produced for that component representation. Another
approach is to combine that RTL representation of the com-
ponent to be tested with RTL representations of other com-
ponents that have already been tested, and with which the
component to be tested will interact. Hence, in this approach,
a portion of the overall system into which the component is
intended to be placed is represented in RTL, and a testbench
is then constructed based on that RTL representation of the
system portion. This avoids the need to produce a particular
testbench specifically for the component to be tested, but
results in loss of direct control over the input stimuli to the
RTL representation of the particular component to be tested.

BRIEF SUMMARY OF THE INVENTION

Embodiments described herein are directed to a testbench
for testing a device under test (DUT), wherein the testbench
has a verification environment including a reference model, a
scoreboard, a dispatcher and a customized agent for each
interface that the DUT needs to receive input from and/or
transmit output on. The testbench system is able to be gener-
ated by a testbench builder that automatically creates generic
agents including generic drivers, loopback ports, sequencers
and/or generic monitors for each interface and then automati-
cally customize the generic agents based on their correspond-
ing interface such that the agents meet the requirements of the
interface for the DUT.

A first aspect is directed to a testbench system stored on a
non-transitory computer readable medium for testing opera-
tion of a device under test. The testbench system comprises a
plurality of agents coupled with the device under test,
wherein one or more of the plurality of agents are configured
to output one or more transactions to the device under test and
a different one or more of the plurality of agents are config-
ured to input one or more device responses to the transactions
from the device under test and a dispatcher including an agent
table and coupled with a reference model, a scoreboard and
the plurality of agents, wherein the dispatcher is configured to
input data comprising a copy of each of the one or more
transactions and the one or more device responses to the
transactions, identify whether each portion of the data is one
of'the copies of each of the one or more transactions or one of
the device responses based on the agent table and route each
portion of data identified as one of the copies of each of the
one or more transactions to the reference model and each
portion of data identified as one of the one or more device
responses to the scoreboard. In some embodiments, the ref-
erence model is configured to mimic a desired function of the
device under test by producing a reference response to each of
a copy of the one or more transactions based on the desired
function and the transaction. In some embodiments, the
scoreboard is coupled with the reference module and config-
ured to receive each of the reference responses from the
reference model and for each transaction compare the asso-
ciated reference response to the associated device response.
In some embodiments, in the agent table each of the plurality
of agents is associated with either the reference model if the
agent is one of the one or more of the plurality of agents that
are configured to output the transactions to the device under
test or the scoreboard if the agent is one of the different one or
more of the plurality of agents that are configured to input the
device responses from the device under test. In some embodi-
ments, the dispatcher determines if data inputted is a copy of
the copies of the transaction or one of the device responses by
identifying whether the scoreboard or the reference model is
associated with the agent of the plurality of agents that sent

US 9,330,227 B1

3

the data within the agent table. In some embodiments, none of
the plurality of agents are coupled to the scoreboard or the
reference model. In some embodiments, each of the plurality
of'agents comprise a monitor configured to sample the trans-
actions and the device responses on an interface between the
agent and the device under test and to automatically forward
the sampled transactions and device responses to the dis-
patcher. In some embodiments, each of the plurality of agents
comprise a sequencer configured to produce a transaction for
testing the device under test and a generic driver coupled with
the sequencer, wherein the driver is configured to receive the
transaction from the sequencer. In some embodiments, each
of' the plurality of agents comprise a transporter coupled with
the monitor and the driver and coupled with the device under
test via the interface, wherein the transporter is configured to
perform a handshake protocol with the device under test over
the interface based on a class of the interface. In some
embodiments, the system further comprises one or more addi-
tional agents coupled with one or more of the plurality of
agents, wherein the one or more of the plurality of agents are
configured to send data received from the device under test to
the one or more additional agents. In some embodiments, the
handshake protocol comprises one of the group consisting of
a one-way handshake protocol without destination flow con-
trol, a two-way handshake protocol and a one-way handshake
protocol with destination flow control. In some embodiments,
the handshake protocol of the transporter of at least one of the
plurality of agents is different than the handshake protocol of
the transporter of a different one of the plurality of agents. In
some embodiments, the device under test is a virtual emula-
tion of an electronic device.

A second aspect is directed to a testbench builder for gen-
erating a testbench for verification of a device under test,
wherein the testbench builder is stored on a non-transitory
computer readable medium and configured to perform a
method. The method comprises reading an interface configu-
ration file associated with the device under test and identify-
ing a plurality of interfaces associated with the device under
test defined in the interface configuration file and generating
a verification environment including an agent for each of the
interfaces in the interface configuration file, a scoreboard, a
reference module and a dispatcher, wherein each of the agents
are coupled with the device under test, one or more of the
agents are configured to output one or more transactions to the
device under test, and a different one or more of the agents are
configured to input one or more device responses to the trans-
actions from the device under test, and further wherein the
dispatcher includes an agent table and is coupled with the
reference model, the scoreboard and the agents, wherein the
dispatcher is configured to input data comprising a copy of
each of the one or more transactions and the one or more
device responses to the transactions, identify whether each
portion of the data is one of the copies of each of the one or
more transactions or one of the device responses based on the
agent table and route each portion of data identified as one of
the copies of each of the one or more transactions to the
reference model and each portion of data identified as one of
the one or more device responses to the scoreboard. In some
embodiments, the reference model is configured to mimic a
desired function of the device under test by producing a
reference response to each of a copy of the one or more
transactions based on the desired function and the transaction.
In some embodiments, the scoreboard is coupled with the
reference module and configured to receive each of the ref-
erence responses from the reference model and for each trans-
action compare the associated reference response to the asso-
ciated device response. In some embodiments, in the agent

10

15

20

25

30

35

40

45

50

55

60

65

4

table each of the plurality of agents is associated with either
the reference model if the agent is one of the one or more of
the plurality of agents that are configured to output the trans-
actions to the device under test or the scoreboard if the agent
is one of the different one or more of the plurality of agents
that are configured to input the device responses from the
device under test. In some embodiments, generating the veri-
fication environment comprises generating the associations
within the agent table based on interface parameters of the
interface associated with the agent as defined in the interface
configuration file. In some embodiments, the dispatcher
determines if the data inputted is a copy of the copies of the
transactions or one of the device responses by identifying
whether the scoreboard or the reference model is associated
with the agent of the plurality of agents that sent the data
within the agent table. In some embodiments, none of the
plurality of agents are coupled to the scoreboard or the refer-
ence model. In some embodiments, each of the plurality of
agents comprise a monitor configured to sample the transac-
tions and the device responses on an interface between the
agent and the device under test and to automatically forward
the sampled transactions and device responses to the dis-
patcher. In some embodiments, each of the plurality of agents
comprise a sequencer configured to produce a transaction for
testing the device under test and a generic driver coupled with
the sequencer, wherein the driver is configured to receive the
transaction from the sequencer. In some embodiments, each
of' the plurality of agents comprise a transporter coupled with
the monitor and the driver and coupled with the device under
test via the interface, wherein the transporter is configured to
perform a handshake protocol with the device under test over
the interface based on a class of the interface. In some
embodiments, the builder further comprises one or more
additional agents coupled with one or more of the plurality of
agents, wherein the one or more of the plurality of agents are
configured to send data received from the device under test to
the one or more additional agents. In some embodiments, the
handshake protocol comprises one of the group consisting of
a one-way handshake protocol without destination flow con-
trol, a two-way handshake protocol and a one-way handshake
protocol with destination flow control. In some embodiments,
the handshake protocol of the transporter of at least one of the
plurality of agents is different than the handshake protocol of
the transporter of a different one of the plurality of agents. In
some embodiments, the device under test is a virtual emula-
tion of an electronic device.

A third aspect is directed to a method of testing a device
under test within a verification environment of a testbench.
The method comprises inputting data from a plurality of
agents within the verification environment with a dispatcher,
wherein the plurality of agents are coupled with the device
under test, one or more of the plurality of agents are config-
ured to output one or more transactions to the device under
test, and a different one or more of the plurality of agents are
configured to input one or more device responses to the trans-
actions from the device under test, and further wherein the
data comprises a copy of each of the one or more transactions
and the one or more device responses to the transactions,
identifying with the dispatcher whether each portion of the
data is one of the copies of each of the one or more transac-
tions or one of the device responses based on the agent table
and routing, with the dispatcher, each portion of data identi-
fied as one of the copies of each of the one or more transac-
tions to a reference model and each portion of data identified
as one of the one or more device responses to a scoreboard. In
some embodiments, the reference model is configured to
mimic a desired function of the device under test by produc-

US 9,330,227 B1

5

ing a reference response to each of a copy of the one or more
transactions based on the desired function and the transaction.
In some embodiments, the scoreboard is coupled with the
reference module and configured to receive each of the ref-
erence responses from the reference model and for each trans-
action compare the associated reference response to the asso-
ciated device response. In some embodiments, the dispatcher
comprises an agent table and in the agent table each of the
plurality of agents is associated with either the reference
model if the agent is one of the one or more of the plurality of
agents that are configured to output the transactions to the
device under test or the scoreboard if the agent is one of the
different one or more of the plurality of agents that are con-
figured to input the device responses from the device under
test. In some embodiments, the method further comprises
identifying whether the scoreboard or the reference model is
associated with the agent of the plurality of agents that sent
the data within the agent table with the dispatcher in order to
determine if the data inputted is a copy of the copies of the
transactions or one of the device responses. In some embodi-
ments, none of the plurality of agents are coupled to the
scoreboard or the reference model. In some embodiments,
each of the plurality of agents comprise a monitor configured
to sample the transactions and the device responses on an
interface between the agent and the device under test and to
automatically forward the sampled transactions and device
responses to the dispatcher. In some embodiments, each of
the plurality of agents comprise a sequencer configured to
produce a transaction for testing the device under test and a
generic driver coupled with the sequencer, wherein the driver
is configured to receive the transaction from the sequencer. In
some embodiments, each of the plurality of agents comprise
a transporter coupled with the monitor and the driver and
coupled with the device under test via the interface, wherein
the transporter is configured to perform a handshake protocol
with the device under test over the interface based on a class
of the interface. In some embodiments, at least one of the
plurality of agents is configured to send the device responses
received from the device under test to one or more additional
agents within the verification environment. In some embodi-
ments, the handshake protocol comprises one of the group
consisting of a one-way handshake protocol without destina-
tion flow control, a two-way handshake protocol and a one-
way handshake protocol with destination flow control. In
some embodiments, the handshake protocol of the transporter
of at least one of the plurality of agents is different than the
handshake protocol of the transporter of a different one of the
plurality of agents. In some embodiments, the device under
test is a virtual emulation of an electronic device.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing will be apparent from the following more
particular description of example embodiments of the inven-
tion, as illustrated in the accompanying drawings in which
like reference characters refer to the same parts throughout
the different views. The drawings are not necessarily to scale,
emphasis instead being placed upon illustrating embodi-
ments of the present invention.

FIG. 1 illustrates a testbench builder system according to
some embodiments.

FIG. 2 illustrates a testbench according to some embodi-
ments.

FIG. 3 illustrates a method of generating a test bench
according to some embodiments.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 4 illustrates a block diagram of an exemplary test-
bench builder device configured to implement the testbench
builder application according to some embodiments.

FIG. 5 illustrates an agent according to some embodi-
ments.

FIG. 6 illustrates a method of testing a device under test
within a verification environment of a testbench according to
some embodiments.

FIG. 7A illustrates a first process including a two-way
handshake protocol and transaction transmission according
to some embodiments.

FIG. 7B illustrates a second process including a simple or
one-way handshake protocol without flow control and trans-
action transmission according to some embodiments.

FIG. 7C illustrates a third process including a one-way
handshake protocol with flow control, transaction transmis-
sion and start/end of data marking signals according to some
embodiments.

FIG. 8 illustrates an agent according to some embodi-
ments.

FIG. 9 illustrates a method of testing a device under test
within a verification environment of a testbench according to
some embodiments.

FIG. 10A illustrates a first process of monitoring a two-
way handshake protocol and transaction transmission accord-
ing to some embodiments.

FIG. 10B illustrates a second process of monitoring a
simple or one-way handshake protocol without flow control
and transaction transmission according to some embodi-
ments.

FIG. 10C illustrates a third process of monitoring a one-
way handshake protocol with flow control, transaction trans-
mission and start/end of data marking signals according to
some embodiments.

FIG. 11 illustrates a testbench according to some embodi-
ments.

FIG. 12 illustrates a method of testing a device under test
within a verification environment of a testbench according to
some embodiments.

FIG. 13 illustrates a testbench with agents having coupled
loopback ports according to some embodiments.

FIG. 14 illustrates a method of testing a device under test
within a verification environment of a testbench according to
some embodiments.

FIG. 15 illustrates a method of testing a device under test
within a verification environment of a testbench according to
some embodiments.

DETAILED DESCRIPTION OF THE INVENTION

In the following description, numerous details are set forth
for purposes of explanation. However, one of ordinary skill in
the art will realize that the invention can be practiced without
the use of these specific details. Thus, the present invention is
not intended to be limited to the embodiments shown but is to
be accorded the widest scope consistent with the principles
and features described herein.

Embodiments described herein are directed to a testbench
for testing a device under test (DUT), wherein the testbench
has a verification environment that is able to include one or
more of a reference model, a scoreboard, a dispatcher and a
customized agent for each interface that the DUT needs to
receive input from and/or transmit output on. The testbench
system is able to comprise agents with generic drivers,
generic monitors, loopback ports and/or interface specific
transporters which handle interface/DUT specific handshake
protocols and/or the monitoring thereof. The testbench sys-

US 9,330,227 B1

7

tem is able to be generated by a testbench builder configured
to automatically generate a testbench for a device under test
(DUT), wherein the generated testbench has a verification
environment comprising one or more of a reference model, a
scoreboard, a dispatcher and a customized agent for each
interface that the DUT needs to receive input from and/or
transmit output on. Specifically, the testbench builder is able
to first automatically create generic agents including generic
drivers, sequencers, loopback ports and/or generic monitors
for each interface and then automatically customize the
generic agents based on their corresponding interface such
that the agents meet the requirements of the interface for the
DUT. At the same time, the testbench builder is able to inte-
grate all the customized agents into the verification environ-
ment, integrate the verification environment with register
transfer level (RTL) ports, binding the outputs and/or inputs
of'the agents to other agents and/or RTL ports, and preparing
a random sample test case for testing the DUT with the
generated testbench. As a result, the testbench system pro-
vides the benefit of enabling the generic drivers and/or
generic monitors to be generated independent of the interface
characteristics such as handshake protocol. Additionally, the
testbench builder is able to automatically create the entire
testbench in minutes based on an interface file including the
necessary interfaces and their characteristics for the DUT.

FIG. 1 illustrates a testbench builder system 100 according
to some embodiments. As shown in FIG. 1, the system 100
comprises a testbench builder device 102 storing a testbench
builder application 103 and coupled with one or more DUTs
104 via one or more networks 106. Alternatively, the test-
bench builder application 103 is able to be stored on an
external database that is accessed by the testbench builder
device 102 via the networks 106. In some embodiments, the
networks 106 comprise a wireless network. Alternatively, the
networks 106 are able comprise a wired network or any
combination of wired and wireless networks. In some
embodiments, the DUT 104 is front end representation of the
device implemented in RTL or other programming language.
Alternatively, the DUT 104 is able to be a physical device,
such as a prototype device. The DUT 104 is able to be stored
ona memory of and/or incorporated into the testbench builder
device such that the network 106 comprises an internal or
local network of the device 102 such as the interfaces
described herein. For example, the DUT 104 generated in
RTL or another programming language is able to interact with
the testbench 202 (see FIG. 2) generated by the testbench
builder application 103 in UVM™ or other language via one
or more interfaces 222 (see FIG. 2). Alternatively, in such
embodiments the DUT 104 is able to be stored on the memory
of one or more additional computing devices (e.g a server,
computer) such that the networks 106 comprise external net-
works coupling together the testbench builder device 102 and
DUT 104 via the additional computing devices. To put it
another way, the DUT 104 is able to comprise hardware,
emulation software or combination thereof. For example, the
DUT 104 is able to be a piece of code (e.g. RTL, gate level,
System C models) which provides or emulates the function-
ality of a device thatis desired to be tested. Although as shown
in FIG. 1, only a single DUT 104 is coupled to the testbench
builder device 102, any number of DUTs 104 and/or devices
102 are contemplated.

FIG. 2 illustrates a testbench 202 according to some
embodiments. As shown in FIG. 2, the testbench 202 includes
a verification environment 204 comprising one or more
agents 206, one or more reference models 208 and one or
more scoreboards 210 coupled with one or more DUTs 212
via one or more interfaces or virtual interfaces 222. In some

10

15

20

25

30

35

40

45

50

55

60

65

8

embodiments, the verification environment 204 and the com-
ponents therein are implemented in one or more verification
methodologies (e.g. universal verification methodology
(UVM™)). Although in FIG. 2 only two agents 206, two
interfaces 222 and one DUT 212 are shown, any number of
agents 206, interfaces 222 and DUTs 212 are contemplated.
For example, in some embodiments the verification environ-
ment 204 comprises at least one agent 206 for each interface
222, wherein the DUT 212 is able to comprise numerous
associated interfaces 222. Additionally, although described
separately herein, in some embodiments one or more of the
component of the verification environment 204 are able to be
combined into a single component. For example, the one or
more reference models 208 and the one or more scoreboards
210 are able to be combined into one or more single entities
that perform the functions of both. Generally, each interface
222 (input or output) requires both control and data signals for
communication. The data signals carry the information upon
which the DUT 212 operates and the control signals define the
significance of the data signals on that cycle. As also shown in
FIG. 2, the agents 206 each comprise one or more sequencers
214, one or more monitors 216 and one or more drivers 220.

The monitors 216 are able to observe and/or sample pin
level activity and converts its observations (e.g. observed
output data signals from the agents 206 and/or DUT 212)to a
format that is used within the verification environment 204 by
the agents 206, reference model 208 and/or scoreboard 210.
The drivers 220 are able to convert transactions received from
the sequencers 214 for the device under test 212 from a format
that is used within the verification environment 204 by the
agents 206, reference model 208 and/or scoreboard 210 to a
pin level configuration of the device under test 212. Alterna-
tively, the agents 206 and/or testbench 202 are able to com-
prise more or less components such that one or more of the
components are able to be replicated, omitted and/or new
components are able to be added. For example, the testbench
202 is able to comprise a database of one or more test cases
each including one or more stimulus patterns based on the
DUT 212 for testing the DUT 212 with the testbench 202. In
some embodiments, the testbench 202 and/or environment
204 is able to be coupled/integrated with the DUT 212 on a
register transfer level. Alternatively, the coupling/integration
of'the testbench 202 and the DUT 212 is able to be with other
communication levels.

In operation, the verification environment 204 provides the
platform or operating system in which the agents 206, refer-
ence model 208 and scoreboard 210 are able to interoperate.
Specifically, based on a test case being implemented by the
testbench 202 and/or environment 204, the driver 220 of one
or more of the agents 206 (e.g. agent 1) accepts data stimulus
or testing data generated by the sequencer 214 in the form of
a transaction and drives the data onto an interface 222q with
which the agent 206 is associated (using a protocol for that
DUT 212 and/or interface 222a). In other words, the
sequencer 214 is able to coordinate the execution of stimulus
in the form of sequences and sequence items from a parent
sequence (e.g. test case), ultimately feeding the driver 220
with transactions. Additionally, the monitor 216 of the one or
more of the agents 206 sends a copy of the data stimulus to the
reference model 208 of the one or more agents 206. This
reference model 208 is able to comprise one or more transfer
functions configured such that it mimics an idealized opera-
tion of the DUT 212 for generated data stimulus. In other
words, the reference model 208 is able to be configured to
represent the behavior of a device under test 212 and/or a
particular feature or features of the device under test 212 (e.g.
common feature patterns) and in that way transform received

US 9,330,227 B1

9

transactions into “ideal” output transactions. As a result, upon
receiving the data stimulus the reference model 208 is able to
send modified reference data to the scoreboard 210, wherein
the modified reference data represents the ideal output data
for anideal DUT 212 based on the inputted data stimulus. The
scoreboard 210 is able to be configured to compare actual and
expected values of the data received from the reference mod-
ule 208 and the data received from the DUT 212 (e.g. via the
monitor 216 of an agent 206). In some embodiments, the
scoreboard 210 is also able to record statistical information
about the data received and/or create reports based on that
information.

At the same time, the DUT 212 receives the data stimulus
from the driver 220 via the associated the interface 222a,
performs an operation on the data and outputs the resulting
DUT data on an appropriate output interface 2225. As a result,
this outputted DUT data is able to be sampled by the monitor
216 ofthe agent 206 associated with the output interface 2225
and sent to the scoreboard 210. The scoreboard 210 is then
able to compare the DUT data to the reference data in order to
determine any differences in behavior of the idealized DUT
represented by the reference model 208 and the DUT 212 that
is currently being tested. Specifically, based on these differ-
ences the scoreboard 210 is able to determine whether the
DUT 212 is behaving withing a set of operational limits for
the test case and/or any operational errors that are indicated
by the DUT data not matching the reference data. As a result,
the testbench 202 is able to emulate a real world environment
(e.g. test case) for the DUT 212 and ensure that the operation
of the DUT 212 within that environment meets the expected
operational standards. Additionally, it should be noted that
although the operation described only included a DUT input
and response, multiple inputs and/or responses (involving
multiple agents 206 and/or interfaces 222) in sequence and/or
in parallel are possible. For example, the reference model 208
is able to receive duplicates of all transactions or stimulus
transmitted from one or a plurality of agents 206 to the DUT
212 and produce expected or ideal output transactions for all
such received duplicates. Similarly, the scoreboard 210 is
able to receive all expected or ideal output transactions from
the reference module 208 as well as all transactions or stimu-
lus transmitted from the DUT 212 to one or a plurality of the
agents 206 such that all the corresponding transactions can be
compared.

FIG. 11 illustrates an alternate embodiment of the test-
bench 202 according to some embodiments. The testbench
202 of FIG. 11 is able to be substantially similar to the
testbench 202 of FIG. 2 except for the differences described
herein. In particular, as shown in FIG. 11 instead of being
coupled with either the reference model 208 or the scoreboard
210 directly as in FIG. 2, the agents 206 (e.g. via the monitors
216) are each coupled to the dispatcher 224 which is coupled
to the reference model 208 and the scoreboard 210. This
dispatcher 224 is able to comprise an agent table or database
226 that associates the agents 206 and/or their associated
interfaces 222a, 2225 (e.g. via the address of the ports of the
dispatcher 224 that coupled to the agents 206) with the refer-
ence model 208 or the scoreboard 210. If the agent/interfaces
receives device responses (e.g. modified transactions) from
the DUT 212 (e.g. interface 2225), it is an “input” agent/
interface that is associated with the scoreboard 210. Other-
wise, if the agent/interface transmits transactions to the DUT
212 (e.g. interface 222a), it is an “output” agent/interface that
is associated with the reference model 208. In other words,
the associations in the agent table 224 represents which of the
reference model 208 or the scoreboard 210 the agents 206
would be coupled directly to if the dispatcher 224 were omit-

5

10

15

20

25

30

35

40

45

55

60

65

10

ted like in FIG. 2. In some embodiments, the agent table 226
comprises associations of the addresses of the ports that
receive the data from the agents 206 with the address of the
port coupled to the scoreboard 210 or the address of the port
coupled to the reference model 208. Additionally, in some
embodiments the agent table 226 is generated by the builder
application based on the interface parameters and the binding
of the ports within the verification environment.

In operation, unlike FIG. 2, the monitor 216 of the one or
more of the agents 206 sends the copy of the data stimulus to
the dispatcher 224 (not directly to the reference model 208),
which then identifies the data as a transaction and routes the
data stimulus to the reference model 208 based on the agent
database 226. Also unlike FIG. 2, the outputted DUT data
(e.g. device response) is sampled by the monitor 216 of the
agent 206 and sent to the dispatcher 224 (not directly to the
scoreboard 210), which then identifies the data as a device
response and routes the response to the reference model 208
based on the agent database 226. Alternatively, the identifi-
cation and/or routing of the data is able to be performed based
on the packet data itself (e.g. header) without the agent table
224. Ineither case, the dispatcher 224 is able to act as a central
routing hub thereby simplifying the connectivity required
within the verification environment 204. Similar to FIG. 2,
upon receiving the data stimulus the reference model 208 is
able to send modified reference data to the scoreboard 210,
wherein the modified reference data represents the ideal out-
put data for an ideal DUT 212 based on the inputted data
stimulus. Then the scoreboard 210 is able to compare actual
and expected values of the data received from the reference
module 208 and the data received from the DUT 212 (e.g. via
the dispatcher 224).

FIG. 12 illustrates a method of testing a device under test
within a verification environment of a testbench according to
some embodiments. Although described separately, one or
more of the steps of the methods of FIGS. 6,9, 12, 14 and/or
15 are able to be combined into a single method. For example,
a method of operation of the testbench 202 or verification
environment 204 as a whole is able to comprise a combination
of'one or more of the steps of all of the methods of FIGS. 6,9,
12, 14 and 15 depending on the types of components (e.g.
agents, transporters, dispatchers, loopback ports) within the
environment 204. As shown in FIG. 12, the dispatcher 224
inputs data from the monitors 216 of a plurality of agents 206
within the verification environment 204 at the step 1202. The
data input by the dispatcher 224 is able to be data transmitted
on the interface 222 associated with each of the agents 206
and sampled by the monitor 216 of that agent 206, wherein
after sampling, the monitor 216 forwards the data to the
dispatcher 224. In some embodiments, the monitors 216 are
able to be configured to automatically forward the sampled
data (or a copy thereof) to a mailbox or queue of the dis-
patcher 224. Further, as described in FIGS. 6 and 9 below, the
sampling by the monitors 216 and driving of transactions by
the drivers 220 is able to be controlled or operate in concert
with the associated transporters 506/806 (see FIGS. 5 and 8).
As aresult, the data is able to comprise transactions transmit-
ted by a driver/transporter of an agent 206 onto an interface
222 to the DUT 212 or responses to a transaction generated
and transmitted by the DUT 212 to an agent 206 via an
interface 222.

The dispatcher 224 identifies whether each portion of the
data is a transaction output by a driver/transporter (or a copy
thereof) or a device response to a transaction output by the
DUT 212 (or a copy thereof) based on the agent table 226 at
the step 1204. In particular, the dispatcher 224 is able to look
up the agent 206 or interface 222 that is the source/destination

US 9,330,227 B1

11

of the data (e.g. based on the port address of the port that
received the data) within the agent table 226 and check
whether the agent 206 or interface 222 is associated in the
table with the scoreboard 210 or the reference model 208. For
example, if the agent/interface is associated with the score-
board 210, it is an “input” agent/interface that receives
responses from the DUT 212 and if the agent/interface is
associated with the reference model 208, it is an “output”
agent/interface that transmits transactions to the DUT 212.
The dispatcher 224 routes each portion of data identified as a
transaction output by a driver/transporter to a reference model
208 within the verification environment and each portion of
data identified as a device response to a transaction output by
the DUT 212 to a scoreboard 210 within the verification
environment 204 at the step 1206. In other words, based on
whether the data is “input™ or “output™ data in the agent table
226 the dispatcher 224 is able to transmit the data to the port
coupled with the scoreboard 210 or the reference model 208.
As aresult, the method provides the benefit ofhaving a central
dispatcher 224 that reduces the connection complexity of the
verification environment 204. In particular, the dispatcher
224 provides a single component that all the agents 206 are
able to be coupled and automatically send data to instead of
each agent needing a separate connection established to either
the reference model 208 or a single line to the scoreboard 210.
As a result, the dispatcher 224 is able to efficiently route the
data either on a single connection to the reference model 208
or a single line to the scoreboard 210.

FIG. 13 illustrates an alternative embodiment of the test-
bench 202 according to some embodiments. The testbench
202 of FIG. 13 is able to be substantially similar to the
testbench 202 of FIGS. 2 and/or 11 except for the differences
described herein. In particular, as shown in FIG. 13 one or
more of the agents 206 within the verification environment
204 are able to comprise and/or be coupled with each other
via one or more loopback ports 228. As a result, instead of
needing a top level multilayer or virtual sequencer in order to
solve testing data (e.g. transactions, device responses) depen-
dency issues amongst the agents 206, the agents 206 are able
to use the loopback ports 228 to send dependency data
directly and solve the dependency issues “peer-to-peer.” In
some embodiments, all of the agents 206 within the environ-
ment 204 comprise one or more loopback ports 228. Alterna-
tively, less than all of the agents 206 comprise loopback ports
206. The loopback ports 228 are able to be substantially
similar to the other ports within the verification environment
204 except that they are dedicated to coupling two or more
agents 206 together within the environment 204.

In some embodiments, some or all of the agents 206 com-
prise one or more input loopback ports for inputting data (e.g.
dependency data) and one or more output loopback ports for
outputting data (e.g. dependency data). Alternatively, some or
all of the agents 206 are able to comprise only one or more
input or only one or more output loopback ports 228. As
shown in FIG. 13, a single agent (agent 1) is coupled to a
single agent (agent 2) via the loopback ports 228. Alterna-
tively, any of the agents 206 are able to be coupled with zero,
one or a plurality of the other agents 206 within the environ-
ment 204 wherein the loopback port connections are able to
be all outputting data from the agent to the other agents, all
inputting data to the agent from the other agents or a combi-
nation of input and output connections. Further, although as
shown in FIG. 13 the loopback ports of the agents 1 and 2 are
coupled via a single connection, a plurality of connections are
able to be made between any two agents 206. For example, a
first connection is able to send dependency data from agent 1

25

35

40

45

50

55

12

to agent 2, whereas a second connection is able to send
dependency data from agent 2 to agent 1.

This dependency data is able to be data that solves or
reflects a dependent or conditional relationship between test-
ing data (e.g. transactions, device responses) sent between the
agents 206 and the DUT 212. Two sets or increments of
testing data have a dependency relationship if the processing
of one of the sets of testing data (with respect to testing the
DUT 212) requires data of or related to the other set of testing
data such that the dependent testing data cannot be imple-
mented/processed (by the agent 206 and/or DUT 212) until
the depended upon testing data has been implemented/pro-
cessed such that the required dependency data can be deter-
mined from the depended upon testing data. An example of
such a pair of dependent testing data is a query response pair,
wherein the response testing data is dependent on what the
query data (i.e. what the query is asking). The dependencies
can be based on some or all of the content of the depended
upon testing data (e.g. what is the query, end of packet, start of
packet, source identifier, destination identifier), the process-
ing of the depended upon testing data (e.g. when was it
sent/synchronization data, has it been received at the destina-
tion, did it contain an error), data derived from the content of
the depended upon data (e.g. what is the size of the depended
upon data) and/or other testing data characteristics that are
able to be depended upon. In other words, testing data is able
to be dependent on other testing data in any case where the
processing or manipulation of a first set of testing data
requires some or all of the processing or manipulation a
second set of testing data.

Similar to the permutations of the connections between the
agents 206 via the loopback ports 228, the dependencies
between testing data is able to be one to one, one to a plurality
and/or mutual dependencies (e.g. multiple dependencies
between the same two sets of testing data), wherein the
“direction” of the dependencies is able to be all one direction
or a combination of directions (e.g. a, b and ¢ dependent ond
or d dependent on a, b and ¢; a and b dependent on d and d
dependent on c; a dependent on b and b dependent on a). The
dependency data itself that is sent between the agents 206 via
the loopback ports 228 is able to comprise the transactions,
the device responses and/or portions or derivations thereof.
For example, the dependency data for a query/response
dependency between two sets of testing data is able to be the
query itself, which is sent to the second agent for generating
aresponse to the query. Alternatively, the dependency data for
two conditional transactions is able to be a portion of one of
the transactions (e.g. start of packet, end of packet, packet
identifier, source port, destination port, packet size, or other
packet field values) that is used to parse or otherwise process
the second of the transactions. Alternatively, the dependency
data for two conditional transactions is able to be an indica-
tion that one of the transactions has been send to or received
by the DUT 212 such that the DUT 212 is ready to receive the
second of the transactions. Essentially, the dependency data is
able to be any data that solves the unknown or variable in the
second of the transactions that created/caused the depen-
dency between the testing data.

In operation, if an agent 206 is coupled with one or more
other agents 206 via the loopback ports 228 for outputting
dependency data to the other agents 206, the monitor 216 is
able to be configured to automatically output sampled testing
data (e.g. device response from the DUT 212) to the other
agents 206 via the output loopback port 228 coupled to the
other agents 206. Alternatively or in addition, if an agent 206
is coupled with one or more other agents 206 via the loopback
ports 228 for outputting dependency data to the other agents

US 9,330,227 B1

13

206, the sequencer 214 is able to be configured to automati-
cally output generated testing data (e.g. a transaction for the
DUT 212)to the other agents 206 via the output loopback port
228 coupled to the other agents 206. Alternatively or in addi-
tion, if an agent 206 is coupled with one or more other agents
206 via the loopback ports 228 for inputting dependency data
to from other agents 206, the sequencer 214 is able to be
configured to automatically input or poll the loopback ports
228 for the dependency data from the loopback ports 228 of
the other agents 206 and to adjust or generate testing data to
be output to the DUT 212 (via the driver 220) based on the
input dependency data.

In some embodiments, the inputting or outputting of
dependency data by the monitor 216 and/or sequencer 214 is
able to occur automatically every cycle. Alternatively, it is
able to occur automatically or manually every cycle, periodic
cycles, based on a trigger event, and/or other cycle schedules.
In embodiments wherein the agent 206 comprises a trans-
porter 506/806 as shown in FIGS. 5 and 8, the transporter
506/806 is able to control the outputting and/or inputting of
the dependency data in the same manner in which it controls
the outputting and/or inputting of the transaction or device
response data as described herein. Alternatively, even if a
transporter 506/806 is present in the agent 206, the monitor
216 and/or sequencer 214 are able to operate independently
with respect to the dependency data and loopback ports 228 as
described above. In some embodiments, the dependency data
is able to be broadcast or multicast on multiple output loop-
back ports 228 simultaneously. Alternatively, the dependency
data is able to be sent out on a plurality of loopback ports 228
sequentially (e.g. round robin), via a priority scheme and/or
upon request.

FIG. 14 illustrates a method of testing a device under test
within a verification environment of a testbench according to
some embodiments. Although described separately, one or
more of the steps of the methods of FIGS. 6,9, 12, 14 and/or
15 are able to be combined into a single method. For example,
a method of operation of the testbench 202 or verification
environment 204 as a whole is able to comprise a combination
of'one or more of the steps of all of the methods of FIGS. 6,9,
12, 14 and 15 depending on the types of components (e.g.
agents, transporters, dispatchers, loopback ports) within the
environment 204. As shown in FIG. 14, a first agent 206 (via
the monitor 216 and/or sequencer 214) sends dependency
data from an output port of its loopback ports 228 to an input
port of loopback ports 228 of one or more second agents 206
within the verification environment 204 at the step 1402. In
some embodiments, the sending of the dependency data com-
prises (simultaneously or otherwise) sending the data to a
plurality of input loopback ports 228 of a plurality of agents
206. In some embodiments, the dependency data is related to
testing data sampled by the monitor 216 (e.g. a device
response/query) from the interface 222 between the first
agent 206 and the DUT 212. For example, in some embodi-
ments the method further comprises the monitor 216 of the
first agent 206 inputting testing data (e.g. a sampled device
response) from the DUT 212 such that the dependency data of
step 1402 is based on the input testing data. Indeed, in some
embodiments the dependency data is able to match the testing
data sampled by the monitor 216. Additionally, in some
embodiments this exemplary operation of the monitor 216 is
able to be controlled by a transporter 806 ofthe first agent 206
as described in the method of FIG. 9.

Alternatively, the dependency data is able to be related
testing data generated by the sequencer 214 (e.g. anew trans-
action) and sent to the DUT 212 via the interface 222 between
the first agent 206 and the DUT 212. For example, in some

10

15

20

25

30

35

40

45

50

55

60

65

14

embodiments the method further comprises the sequencer
214 of'the first agent 206 generating new testing data (e.g. the
new transaction) for testing the DUT 212 and the driver 220 of
the first agent 206 receives the testing data from the sequencer
214 and sends it to the DUT 212 such that the dependency
data of step 1402 is based on the new testing data. Further, this
new testing data is able to be independent testing data or
testing data that was dependent on a different set of testing
data from a different agent 206. Moreover, in some embodi-
ments this exemplary operation of the sequencer 214 and
driver 220 is able to be controlled by a transporter 506 of the
first agent 206 as described in the method of FIG. 6. The
sequencer 214 of the second agent(s) 206 polls the input port
228 for the dependency data at the step 1404. The sequencer
214 ofthe second agent(s) 206 produce or generate dependent
testing data (e.g. a new transaction) for testing the DUT 212
based on the dependency data at the step 1406. The driver 220
of'the second agent(s) 206 receive the dependent testing data
from the sequencer 214 and send the dependent testing data to
the DUT 212 at the step 1408. In particular, in some embodi-
ments a sequence that creates/builds transactions is able to be
registered in the sequencer 214 such that the sequencer 214 is
able to execute the sequence and thereby generate the trans-
actions. In such embodiments, the polling of the dependency
data and/or producing of dependent testing data is able to be
in the sequence registered in the sequencer 214.

In some embodiments, the method further comprises the
first agent 206 receiving dependency data from one or more
other agents 206 in the same manner that the second agent(s)
206 received such data from the first agent 206. Indeed, the
dependency data sent by the first agent 206 is able to be based
on dependency data received by the first agent 206 from a
different agent 206 via the loopback ports 228. Further, in
some embodiments, one or more of the second agent(s) 206
send dependency data to the first agent 206 either before or
after the first agent 206 sends its dependency data. Accord-
ingly, the method provides the advantage of enabling depen-
dency issues that arise during the testing of the DUT 212 to be
solved on a peer to peer level between the agents 206 via the
loopback ports 228 and their connections removing the need
for atop level virtual or multi-layer sequencer to be generated
in the virtual environment 204.

In some embodiments, the monitor 216 of one or more of
the agents 206 is configured to determine a timestamp value
for testing data (e.g. transactions) sampled by the monitor
216, wherein the timestamp value indicates the time when the
testing data was sampled from the interface 222 by the moni-
tor. As a result, this timestamp value for the testing data is able
to be referenced by any of the agents 206 and/or other com-
ponents (e.g. scoreboard, reference module, dispatcher) of
the verification environment 204 in order to determine the
latency of the testing data in reaching the agents 206 and/or
components. Specifically, in such embodiments the agents
206 and/or other components are able to read the timestamp
value and compare it to the current time in order to determine
the amount of time (e.g. latency value) that elapsed between
when the testing data was sampled and when it reached the
agents 206 and/or other components (i.e. the verification
environment latency for the testing data). The agents 206
and/or other components are then able to adjust the timing of
their actions based on this latency value. These actions are
able to comprise the generation and/or driving of testing data
to the DUT 212, the initiation of handshake protocol with the
DUT 212, the generation and/or transmission of dependency
data to one or more different agents 206 via loopback ports

US 9,330,227 B1

15

228, and/or any other operations performed by the agents 206
and/or the other components of the verification environment
204.

For example, if a first agent 206 is configured to receive a
query from the DUT 212 and a second agent is configured to
send a response to the DUT 212 for the query after a prede-
termined time period (e.g. 15-25 clock cycles), the monitor
216 of'the first agent is able to determine the timestamp value
of'the query. Then, when the second agent receives the query
it is able to determine the latency value of the query based on
the timestamp value and the time it was received. Finally, the
second agent 206 is able to determine how much more time
must pass (if any) before the predetermined time period has
elapsed by subtracting the latency value from the predeter-
mined time period such that the second agent 206 is able to
ensure that the response to the query is sent to the DUT 212 at
a time when or after the predetermined time period has
elapsed. As aresult, the timestamps provide the advantage of
enabling each agent 206 and/or other component within the
verification environment 204 to determine the latency of any
testing data that they receive and adjust for that latency if
necessary. In particular, this able to be done without the use of
a separate component (e.g. a virtual or multilayer sequencer)
that must separately control the agents 206 and/or other com-
ponents in order to adjust for the latency issues.

In some embodiments, the sequencer 214 of one or more of
the agents 216 is configured to read the timestamp value,
determine the latency value based on the current time and
adjust operation based on the latency value. Alternatively, the
driver 220, monitor 216, transporter 506 (see FIG. 5), or other
element of the agents 206 is able to read the timestamp value,
determine the latency value based on the current time and
adjust operation based on the latency value. In some embodi-
ments, the timestamp value is added to a header of the testing
data such that subsequent agents 206 and/or the DUT 212 are
ableto read the header of the testing data in order to determine
the timestamp value. Alternatively or in addition, the times-
tamp value is able to be stored and/or transmitted separately
from the testing data to which it relates. For example, the
timestamp value is able to be added to the dependency data
related to the testing data such that the value is able to be
accessed from the dependency data.

FIG. 15 illustrates a method of testing a device under test
within a verification environment of a testbench according to
some embodiments. Although described separately, one or
more of the steps of the methods of FIGS. 6,9, 12, 14 and/or
15 are able to be combined into a single method. For example,
a method of operation of the testbench 202 or verification
environment 204 as a whole is able to comprise a combination
of'one or more of the steps of all of the methods of FIGS. 6,9,
12, 14 and 15 depending on the types of components (e.g.
agents, transporters, dispatchers, loopback ports) within the
environment 204. As shown in FIG. 15, a first agent 206
performs one of outputting the testing data to or inputting the
testing data from the DUT 212 via the interface 222 coupling
the first agent 206 to the DUT 212 at the step 1502. A monitor
216 of'the first agent 206 samples testing data on the interface
222 between the DUT 212 and a first agent 206 at the step
1504. The monitor 216 generates a timestamp for the testing
data at the step 1506. Specifically, the timestamp is able to
indicate a sampled time at which the testing data was sampled
by the monitor 216 and thus first becomes active within the
verification environment 204.

In some embodiments, the method further comprises
receiving sequencer data associated with the testing data with
a sequencer 214 of a second agent 206 coupled to the first
agent 206 (e.g via loopback ports 228) and comparing the

10

15

20

25

30

35

40

45

50

55

60

65

16

sampled time associated with the testing data with a current
time to determine a latency of the received sequencer data.
The comparison is able to be performed by the sequencer 214
or any other component of the second agent 206. In some
embodiments, the method further comprises generating new
testing data with the sequencer 214 based on the received
sequencer data and adjusting when a driver 220 of the second
agent 206 drives the new testing data to the DUT 212 with the
sequencer 214 based on the latency of the received sequencer
data. In particular, the adjusting of when the driver 220 drives
the new testing data to the DUT 212 is able to comprise
driving the new testing data when a time period equal to a
predetermined delay value minus the latency value has
elapsed. For example, if the sequencer 214 and/or driver 220
are configured to drive testing data to the DUT 212 after a
predetermined delay period from when the DUT 212 trans-
mitted testing data (e.g. device response/query) to the verifi-
cation environment 204, the sequencer 214 and/or driver 220
are able to take in consideration the latency of the testing data
reaching the sequencer 214 and/or driver 220 when calculat-
ing the predetermined delay period. In some embodiments,
the delay period is between 15 and 25 clock cycles. Alterna-
tively, the delay period is able to be less than 15 clock cycles
or greater than 25 clock cycles. Also, in some embodiments
the testing data of the second agent 206 is dependent on the
testing data of the first agent 206 such that the second agent
206 is unable to output the dependent testing data without first
receiving dependency data about the depended upon testing
data of the first agent 206. Indeed, in such embodiments the
dependency data is the same as the sequencer data. For
example, the dependency data is able to be a transaction that
was received by the sequencer 214 as the sequencer data.
Testbench Agent

FIG. 5 illustrates an agent 500 according to some embodi-
ments. In particular, the agent 500 is able to be substantially
similar to the agent 206 except for the differences described
herein. Further, although discussed separately, the agent 500
is able to replace and/or supplement the agents in all of the
embodiments described herein. Additionally, although shown
separately in FIG. 5, the transporter 506 is able to combined
within or a part of the driver 504. As shown in FIG. 5, the
agent 500 comprises a sequencer 502, a driver 504, a trans-
porter 506 and a monitor 508, wherein the sequencer 502 and
transporter 506 are coupled with the driver 504, and the driver
504 and transporter 506 are coupled with the DUT 212 via an
interface 222. The transporter 506 is able to be configured to
handle all handshaking protocol necessary for communicat-
ing with the DUT 212 over the interface 222 such that the
driver 504 is able to be generic in that it is not configured
based on the handshake protocol of the interface 222. In
particular, by removing the handshaking protocol responsi-
bilities from the driver 504 with the transporter 506, the driver
504 is able to be automatically generated for an interface 222
without any knowledge of the protocols of the interface 222.

In some embodiments, the agent 500, driver 504 and/or
transporter 506 are configured to transmit all or a portion of
the transaction to the DUT 212 via the interface 222 every
clock cycle. Similarly, in some embodiments the transporter
506 is configured to perform the handshaking protocol with
the interface 222 and/or DUT 212 every clock cycle before
permitting or preventing transmission of the transaction to the
DUT 212. Alternatively, the transmission of the transaction
and/or performance of the handshaking is able to be per-
formed on a transaction basis, operation basis, periodically,
on demand, or according to other types of schedules. In some

US 9,330,227 B1

17

embodiments, the driver 504 is able to operate without the
transporter 506 using a default handshake protocol or no
handshake protocol.

FIG. 6 illustrates a method of testing a device under test
212 within a verification environment 204 of a testbench 202
according to some embodiments. Although described sepa-
rately, one or more of the steps of the methods of FIGS. 6, 9,
12,14 and/or 15 are able to be combined into a single method.
As shown in FIG. 6, a sequencer 502 of an agent 500 within
the verification environment 204 produces a transaction for
testing the DUT 212 at the step 602. The generic driver 504 of
the agent 500 retrieves and/or receives the transaction from
the sequencer 502 at the step 604. In some embodiments, a
new transaction is produced and/or received each clock cycle.
Alternatively, one or more of the transactions are able to be
multi-cycle such that data related to a single transaction is
transmitted and/or received over multiple cycles. The driver
504 and/or the transporter 506 of the agent 500 performs a
handshake with the DUT 212 (via the interface 222) accord-
ing to ahandshake protocol at the step 606. In other words, the
transporter 506 is able to both drive control signals onto
and/or sample control signals from an interface 222 in order
to effectuate a handshake protocol for that interface 222 and/
or DUT 212. In some embodiments, the handshake protocol
used is based on interface 222 and/or DUT 212. In some
embodiments, the handshake protocol is indicated by the
transporter class for the interface 222 within the interface
configuration file. Based on the outcome of the handshake
protocol, the driver 504 and/or the transporter 506 determines
if the interface 222 and/or DUT 212 is ready to receive data at
the step 608. The driver 504 communicates with the trans-
porter 506 to forward/load the transaction on the interface 222
if the outcome of the handshake protocol indicates the inter-
face 222 and/or DUT 212 is ready to receive the transaction at
the step 610. In some embodiments, the monitor of the agent
500 also forwards the transaction to the reference model 208
(either directly or via a dispatcher 224) as described above. In
some embodiments, the communication is a control com-
mand received by the driver 504 from the transporter 506
indicating the outcome of the handshake protocol. In some
embodiments, the driver 504 gives the transaction to the
transporter 506 based on the outcome such that the trans-
porter 506 forwards and/or loads the transaction on the inter-
face 222. Alternatively, the driver 504 is able to forward
and/or load the transaction on the interface 222 based on the
outcome of the handshake protocol. As a result, the method
provides the benefit of enabling the driver 504 to remain
generic while still customizing the agent 500 for the interface
222 and/or DUT 212 by using the transporter 506 to control
the handshake protocol with the interface 222 and/or DUT
212.

In some embodiments, the method further comprises send-
ing data received from the DUT 212 to the one or more
additional agents coupled to the agent 500 within the envi-
ronment 204. In such embodiments, the handshake protocol
used by the transporter 506 is able to be different than a
handshake protocol of a transporter of the one or more addi-
tional agents. As described above, in some embodiments the
handshake protocol is one of three handshake protocols con-
sisting of a one-way handshake protocol without destination
flow control, a two-way handshake protocol and a one-way
handshake protocol with destination flow control. Alterna-
tively, any number and/or combination of different or the
same handshake protocols are able to be used. In some
embodiments, steps 604-610 are performed each clock cycle.
Alternatively, if the transaction is a multi-cycle transaction,

20

25

30

40

45

50

18

step 604 is able to be omitted and only steps 606-610 are
performed each subsequent clock cycle until the multi-cycle
transaction is complete.

FIGS. 7A-7C illustrate three exemplary handshake proto-
col and transaction transfer processes according to some
embodiments. FIG. 7A illustrates a first process including a
two-way handshake protocol 702 and transaction transmis-
sion 704 according to some embodiments. In particular, the
two-way handshake protocol 702 comprises sending a first
signal “source ready” from the agent 500 to the DUT 212 (via
an interface) and sending a second signal “destination ready”
from the DUT 212 to the agent 500. According to the hand-
shake protocol 702, the agent 500 indicates that it is ready to
send data (and/or that all control and data signals are valid)
when it makes “source ready” high and the DUT 212 indi-
cates that it is ready to accept data when “destination ready”
is high. As a result, when both “source ready” and “destina-
tion ready” are both high, the outcome of the protocol indi-
cates that transaction transmission(s) 704 should be transmit-
ted and when either “source ready” or “destination ready” are
low, the outcome of the protocol indicates that transaction
transmission(s) 704 should not be transmitted or cease from
being transmitted from the agent 500 to the DUT 212. This
two-way handshake protocol enables either party (agent 500
or DUT 212) to stop transaction transmissions 704 unilater-
ally and restricts the beginning of transaction transmissions
704 to when both parties indicate that they are ready. As
shown in FIG. 7A, the transaction transmission 704 com-
prises two datasets (data0 and datal) having a payloads of
20:0 and 11:0. Alternatively, the transaction transmission 704
is able to comprise more or less datasets and/or transmission
streams each having more or less payload and/or quantity of
data. In some embodiments, the driver 504 transmits the
transaction transmission 704 to the DUT 212 based on the
outcome of the handshake protocol 702 (as executed by the
transporter 506). Alternatively, the transporter 506 is able to
retrieve the transaction from the driver 504 and transmit the
transaction transmission 704 to the DUT 212 based on the
outcome of the handshake protocol 702.

FIG. 7B illustrates a second process including a simple or
one-way handshake protocol without flow control 702 and
transaction transmission 704 according to some embodi-
ments. In particular, the one-way handshake protocol without
flow control 702 comprises sending a first signal “valid” from
the agent 500 to the DUT 212 (via an interface). According to
the handshake protocol 702, the agent 500 indicates that it is
ready to send data when it makes “valid” high (and/or that all
control and data signals are valid), but unlike the first process,
the agent 500 does not wait for, nor does the DUT 212 send,
a signal that indicates that the DUT 212 is ready to accept
data. As a result, when “valid” is high, the outcome of the
protocol indicates that transaction transmission(s) 704 should
be transmitted and when ““valid” is low, the outcome of the
protocol indicates that transaction transmission(s) 704 should
not be transmitted or cease from being transmitted from the
agent 500 to the DUT 212. This one-way handshake protocol
puts full control in the agent 500 to stop or start transaction
transmissions 704 unilaterally, wherein the DUT 212 has no
flow control and rather is simply notified by the agent 500
when transaction transmission 704 is incoming. As shown in
FIG. 7B, like FIG. 7A, the transaction transmission 704 com-
prises two datasets (data0 and datal) having payloads of 20:0
and 11:0. However, the transaction transmission 704 is able to
comprise more or less datasets and/or transmission streams
each having more or less payload and/or quantity of data. In
some embodiments, the driver 504 transmits the transaction
transmission 704 to the DUT 212 based on the outcome ofthe

US 9,330,227 B1

19

handshake protocol 702 (as executed by the transporter 506).
Alternatively, the transporter 506 is able to retrieve the trans-
action from the driver 504 and transmit the transaction trans-
mission 704 to the DUT 212 based on the outcome of the
handshake protocol 702.

FIG. 7C illustrates a third process including a one-way
handshake protocol with flow control 702, transaction trans-
mission 704 and start/end of data marking signals 706 accord-
ing to some embodiments. In particular, the one-way hand-
shake protocol with flow control 702 comprises sending a first
signal “valid” from the agent 500 to the DUT 212 (via an
interface). According to the handshake protocol with flow
control 702, the agent 500 indicates that it is ready to send
data (and/or that all control and data signals are valid) when it
makes “valid” high and, like the second process, the agent
500 does not wait for, nor does the DUT 212 send, a signal
that indicates that the DUT 212 is ready to accept data. How-
ever, unlike the second process, the one-way handshake pro-
tocol with flow control 702 enables the DUT 212 to send the
signal “flow control” to indicate when the DUT 212 can no
longer accept more data. As a result, when “valid” is high and
“flow control” is low, the outcome of the protocol indicates
that transaction transmission(s) 704 should be transmitted
and when “valid” is low or “flow control” is high, the outcome
of the protocol indicates that transaction transmission(s) 704
should not be transmitted or cease from being transmitted
from the agent 500 to the DUT 212. This one-way handshake
protocol with flow control puts control in the agent 500 over
the start of transaction transmissions 704 unilaterally, but
gives the DUT 212 the ability to stop the transaction trans-
missions 704 using the flow control signal “flow control”. For
multi-cycle transactions, in some embodiments the first sig-
nal portion of the third process is only performed in the first
cycle such that subsequent cycles of the multi-cycle transac-
tion comprise repeating the checking for the “flow control”
going high in order to indicate that any further data is invalid.
Alternatively, even for multi-cycle transactions the first signal
portion is able to be repeated along with the “flow control”
checking each cycle of the transaction until the multi-cycle
transaction is complete.

Further, as shown in FIG. 7C, the third process is able to
comprise start/end of data marking signals 706. These signals
706 are able to comprise a start of packet (sop) signal and an
end of packet (eop) signal that indicate the first data cycle and
the last data cycle of the packet (of the transaction transmis-
sion 704), respectively. As a result, the start/end of data mark-
ing signals 706 are able to be used with larger packets and/or
transaction transmissions 704 in order to indicate to the DUT
212 when each packet (or transaction 704) starts and/or stops.
For example, if the agent 500 is sending data at the rate of 32
bits per clock cycle, but the packets and/or chunks are greater
than 32 bits of data (e.g. 64 or 128 bytes/chunks), the start/end
of'data marking signals 706 are able to be used to mark the end
and the beginning of the packets and/or chunks. Alternatively,
the start/end of data marking signals 706 are able to be omit-
ted from the third process. Additionally, it should be noted
that the start/end of data marking signals 706 are able to be
added to the first, second and/or any other handshake pro-
cesses described herein as desired to deal with longer trans-
action transmissions 704. Additionally, as shown in FIG. 7C,
the transaction transmission 704 comprises one dataset (data)
having a payload of 31:0. However, similar to above, the
transaction transmission 704 is able to comprise more or less
datasets and/or transmission streams each having more or less
payload and/or quantity of data. In some embodiments, the
driver 504 transmits the transaction transmission 704 to the
DUT 212 based on the outcome of the handshake protocol

10

15

20

25

30

35

40

45

50

55

60

65

20

702 (as executed by the transporter 506). Alternatively, the
transporter 506 is able to retrieve the transaction from the
driver 504 and transmit the transaction transmission 704 to
the DUT 212 based on the outcome of the handshake protocol
702. Additionally, although FIGS. 7A-7C illustrate the above
described three handshake protocol types, it is understood
that other types of handshake protocols are able to be used
such a three-way handshakes with or without flow control or
data marking and other types of handshake protocols as
known in the art.

FIG. 8 illustrates an agent 800 according to some embodi-
ments. In particular, the agent 800 is able to be substantially
similar to the agents 206 and/or 500 except for the differences
described herein. Further, although discussed separately, the
agent 800 is able to replace and/or supplement the agents in
all of the embodiments described herein. As shown in FIG. 8,
the agent 800 comprises a sequencer 802, a driver 804, a
transporter 806 and a monitor 808, wherein the sequencer 802
is coupled with the driver 804, the transporter 806 is coupled
with the monitor 808, and the monitor 808 and transporter
806 are coupled with the DUT 212 and/or the interface 222.
The transporter 806 is able to be configured to handle all
handshaking protocol necessary for communicating with the
DUT 212 over the interface 222 such that the monitor 808 is
able to be generic in that it is not configured based on the
handshake protocol of the interface 222. In particular, by
removing the handshaking protocol responsibilities from the
monitor 808 with the transporter 806, the monitor 808 is able
to be automatically generated for an interface 222 without any
knowledge of the protocols of the interface 222.

In some embodiments, the monitor 808 and/or transporter
806 are configured to monitor and/or sample all or a portion of
the transaction on the interface 222 every clock cycle. In such
embodiments, the transporter 806 is able to indicate to the
monitor 808 whether the sampled/monitored data or transac-
tion is valid based on the outcome of the handshake protocol
such that the monitor knows whether to send the sampled/
monitored data to a scoreboard 210 or reference model 208
within the environment 204. Alternatively, the monitor 808 is
able to be configured to only sample all or a portion of the
transaction on the interface 222 during clock cycle where the
transporter 806 indicates that the data or transaction is valid
based on the outcome of the handshake protocol. In some
embodiments the transporter 806 is configured to perform the
handshaking protocol with the interface 222 and/or DUT 212
every clock cycle. Alternatively, the performance of the hand-
shaking is able to be performed on a transaction basis, opera-
tion basis, periodically, on demand, or according to other
types of schedules. In some embodiments, the monitor 808 is
able to operate without the transporter 506 using a default
handshake protocol or no handshake protocol to determine if
data is valid.

In some embodiments, the agents 500 and 800 are able to
be combined such that the combined agent comprises both a
generic driver 504 and a generic monitor 808. In such
embodiments, the driver 504 and monitor 808 are able to
share the same the transporter 506/806, which is coupled with
both the driver 504 and monitor 808. As a result, in such
embodiments the transporter 506/806 is able to control both
the driver 504 and the monitor 808 based on the outcome of
the handshake protocol as described herein. Alternatively, in
such embodiments the driver 504 and the monitor 808 are
able to have separate transporters 506/806 that are separately
coupled to the monitor 808 or the driver 504 and operate as
described herein separately.

FIG. 9 illustrates a method of testing a device under test
212 within a verification environment 204 of a testbench 202

US 9,330,227 B1

21

according to some embodiments. Although described sepa-
rately, one or more of the steps of the methods of FIGS. 6, 9,
12,14 and/or 15 are able to be combined into a single method.
As shown in FIG. 9, a monitor 808 of an agent 800 within the
verification environment 204 monitors and/or samples one or
more transactions transmitted on an interface 222 between
the agent 800 and the DUT 212 at the step 902. In some
embodiments, a new transaction is monitored and/or sampled
each clock cycle. Alternatively, one or more of the transac-
tions are able to be multi-cycle such that data related to a
single transaction is monitored and/or sampled over multiple
cycles. The monitor 808 of the agent 800 monitors a hand-
shake on the DUT 212 according to a handshake protocol at
the step 904. Specifically, the transporter 806 and/or driver
804 of the agent 800 are able to perform the handshake with
the DUT 212 (via the interface 222) according to the hand-
shake protocol which is monitored by the monitor 808. In
other words, the transporter 806 is able to both drive control
signals onto and/or sample control signals from an interface
222 in order to effectuate a handshake protocol for that inter-
face 222 and/or DUT 212. In some embodiments, the hand-
shake protocol used is based on interface 222 and/or DUT
212. In some embodiments, the handshake protocol is indi-
cated by the transporter class for the interface 222 within the
interface configuration file.

Based on the outcome of the handshake protocol, the moni-
tor 808 determines if the data is ready on the interface 222
and/or DUT 212 at the step 906. The monitor 808 communi-
cates with the transporter 806 to sample the transaction if the
outcome of the handshake protocol indicates the transaction
is valid at the step 908. The monitor 808 forwards the sampled
transaction to a scoreboard 210 or a reference model 208 of
the verification environment 204 at the step 910. In other
words, the transporter 806 is able to indicate to the monitor
808 whether the transaction or portion of the transaction on
the interface 222 should be sampled and forwarded to the
scoreboard 210 or reference model 208 because the outcome
of the handshake protocol indicates that the transaction is
valid or invalid for the cycle or cycles. In some embodiments,
the communication is a control command received by the
monitor 808 from the transporter 806 indicating the outcome
of the handshake protocol. In some embodiments, the moni-
tor 808 discards or fails to forward the transaction to the
scoreboard 210 or the reference model 208 if the outcome of
the handshake protocol indicates the transaction is invalid. As
a result, the method provides the benefit of enabling the
monitor 808 to remain generic while still customizing the
agent 800 for the interface 222 and/or DUT 212 by using the
transporter 806 to control the handshake protocol with the
interface 222 and/or DUT 212.

In some embodiments, the method further comprises send-
ing data received from the DUT 212 to the one or more
additional agents coupled to the agent 800 within the envi-
ronment 204. In such embodiments, the handshake protocol
used by the transporter 806 is able to be different than a
handshake protocol of a transporter of the one or more addi-
tional agents. As described above, in some embodiments the
handshake protocol is one of three handshake protocols con-
sisting of a one-way handshake protocol without destination
flow control, a two-way handshake protocol and a one-way
handshake protocol with destination flow control. Alterna-
tively, any number and/or combination of different or the
same handshake protocols are able to be used. In some
embodiments, the handshake protocol and/or sampling and
forwarding based on the outcome of the handshake protocol is
able to be performed each clock cycle. In addition, if the
transaction is a multi-cycle transaction, the sampling and/or

25

40

45

50

55

22

forwarding is able to continue through multiple consecutive
clock cycles until the multi-cycle transaction is complete (e.g.
based on the end of packet or start of packet indicators). In
such multi-cycle embodiments, the handshake protocol is
able to still be repeated each cycle to verify that the transac-
tion is still valid or has become invalid.

FIGS. 10A-10C illustrate three exemplary handshake pro-
tocol and transaction transfer processes according to some
embodiments. The three handshake protocol and transaction
transfer processes of FIGS. 10A-10C are substantially similar
to those described in FIGS. 7A-7C except for the differences
described herein. FIG. 10A illustrates a first process of moni-
toring a two-way handshake protocol 1002 and transaction
transmission 1004 according to some embodiments. In par-
ticular, the two-way handshake protocol 1002 comprises
sending a first signal “source ready” from the driver 804
and/or transporter 806 to the DUT 212 (via an interface) and
sending a second signal “destination ready” from the DUT
212 to the driver 804 and/or transporter 806. According to the
handshake protocol 1002, the driver 804 and/or transporter
806 indicates that it is ready to send data (and/or that all
control and data signals are valid) when it makes “source
ready” high and the DUT 212 indicates that it is ready to
accept data when “destination ready” is high. As a result,
when both “source ready” and “destination ready” are both
high, the outcome of the protocol indicates that transaction
transmission(s) 1004 are valid (e.g. for sampling) and when
either “source ready” or “destination ready” are low, the
outcome of the protocol indicates that transaction transmis-
sion(s) 1004 are invalid (e.g. do not need to be sampled or
forwarded). This two-way handshake protocol enables either
party (driver 804/transporter 806 or DUT 212) to stop trans-
action transmissions 1004 unilaterally and restricts the begin-
ning of transaction transmissions 1004 to when both parties
indicate that they are ready. As shown in FIG. 10A, the trans-
action transmission 1004 comprises two datasets (datal and
data2) having payloads of 7:0 and 31:0. Alternatively, the
transaction transmission 1004 is able to comprise more or less
datasets and/or transmission streams each having more or less
payload and/or quantity of data. Based on the outcome of the
handshake protocol 1002 (as received from the transporter
806), the monitor 808 is able to sample the datasets of the
transaction 1004 for forwarding to the reference model 208 or
the scoreboard 210. In other words, the monitor 808 is able to
determine when the datasets transmitted on the interface 222
are valid datasets (e.g. when “source ready” and “destination
ready” are high) that need to be sampled and forwarded to the
desired component based on the outcome of the handshake
protocol as indicated by the transporter 806.

FIG. 10B illustrates a second process of monitoring a
simple or one-way handshake protocol without flow control
1002 and transaction transmission 1004 according to some
embodiments. In particular, the one-way handshake protocol
without flow control 1002 comprises sending a first signal
“valid” from the driver 804 and/or transporter 806 to the DUT
212 (via an interface). According to the handshake protocol
1002, the driver 804 and/or transporter 806 indicates that it is
ready to send data when it makes “valid” high (and/or that all
control and data signals are valid), but unlike the first process,
the driver 804 and/or transporter 806 do not wait for, nor does
the DUT 212 send, a signal that indicates that the DUT 212 is
ready to accept data. As a result, when “valid” is high, the
outcome of the protocol indicates that transaction transmis-
sion(s) 1004 are valid (e.g. for sampling) and when “valid” is
low, the outcome of the protocol indicates that transaction
transmission(s) 1004 are invalid (e.g. do not need to be
sampled or forwarded). This one-way handshake protocol

US 9,330,227 B1

23

puts full control in the driver 804 and/or transporter 806 to
stop or start transaction transmissions 1004 unilaterally,
wherein the DUT 212 has no flow control and rather is simply
notified by the driver 804 and/or transporter 806 when trans-
action transmission 1004 is incoming. As shown in FIG. 10B,
like FIG. 10A, the transaction transmission 1004 comprises
two datasets (data and datal) having payloads of 7:0 and 31:0.
However, the transaction transmission 1004 is able to com-
prise more or less datasets and/or transmission streams each
having more or less payload and/or quantity of data. Based on
the outcome of the handshake protocol 1002 (as received
from the transporter 806), the monitor 808 is able to sample
the datasets of the transaction 1004 for forwarding to the
reference model 208 or the scoreboard 210. In other words,
the monitor 808 is able to determine when the datasets trans-
mitted on the interface 222 are valid datasets (e.g. when
“valid” is high) that need to be sampled and forwarded to the
desired component based on the outcome of the handshake
protocol as indicated by the transporter 806.

FIG. 10C illustrates a third process of monitoring a one-
way handshake protocol with flow control 1002, transaction
transmission 1004 and start/end of data marking signals 1006
according to some embodiments. In particular, the one-way
handshake protocol with flow control 1002 comprises send-
ing a first signal “valid” from the driver 804 and/or transporter
806 to the DUT 212 (via an interface). According to the
handshake protocol with flow control 1002, the driver 804
and/or transporter 806 indicates that it is ready to send data
(and/or that all control and data signals are valid) when it
makes “valid” high and, like the second process, the driver
804 and/or transporter 806 does not wait for, nor does the
DUT 212 send, a signal that indicates that the DUT 212 is
ready to accept data. However, unlike the second process, the
one-way handshake protocol with flow control 1002 enables
the DUT 212 to send the signal “flow control” to indicate
when the DUT 212 can no longer accept more data. As a
result, when “valid” is high and “flow control” is low, the
outcome of the protocol indicates that transaction transmis-
sion(s) 1004 are valid (e.g. for sampling) and when “valid” is
low or “flow control” is high, the outcome of the protocol
indicates that transaction transmission(s) 1004 are invalid
(e.g. do not need to be sampled or forwarded). This one-way
handshake protocol with flow control puts control in the
driver 804 and/or transporter 806 over the start of transaction
transmissions 1004 unilaterally, but gives the DUT 212 the
ability to stop the transaction transmissions 1004 using the
flow control signal “flow control”. For multi-cycle transac-
tions, in some embodiments the first signal portion of the third
process is only performed in the first cycle such that subse-
quent cycles of the multi-cycle transaction comprise repeat-
ing the checking for the “flow control” going high in order to
indicate that any further data is invalid. Alternatively, even for
multi-cycle transactions the first signal portion is able to be
repeated along with the “flow control” checking each cycle of
the transaction until the multi-cycle transaction is complete.

Further, as shown in FIG. 10C, the third process is able to
comprise start/end of data marking signals 1006. These sig-
nals 1006 are able to comprise a start of packet (sop) signal
and an end of packet (eop) signal that indicate the first data
cycle and the last data cycle of the packet (of the transaction
transmission 1004), respectively. As a result, the start/end of
data marking signals 1006 are able to be used with larger
packets and/or transaction transmissions 1004 in order to
indicate to the DUT 212 when each packet (or transaction
1004) starts and/or stops. For example, if the driver 804
and/or transporter 806 is sending data at the rate of 32 bits per
clock cycle, but the packets and/or chunks are greater than 32

20

40

45

55

24

bits of data (e.g. 64 or 128 bytes/chunks), the start/end of data
marking signals 1006 are able to be used to mark the end and
the beginning of'the packets and/or chunks. Alternatively, the
start/end of data marking signals 1006 are able to be omitted
from the third process. Additionally, it should be noted that
the start/end of data marking signals 1006 are able to be added
to the first, second and/or any other handshake processes
described herein as desired to deal with longer transaction
transmissions 1004. Additionally, as shown in FIG. 10C, the
transaction transmission 1004 comprises one dataset (data)
having a payload of 31:0. However, similar to above, the
transaction transmission 1004 is able to comprise more or less
datasets and/or transmission streams each having more or less
payload and/or quantity of data.

Based on the outcome of the handshake protocol 1002 (as
received from the transporter 806), the monitor 808 is able to
sample the datasets of the transaction 1004 for forwarding to
the reference model 208 or the scoreboard 210. Further, the
monitor 808 is able to base the beginning and end of its
sampling and/or forwarding on the start/end of packets and/or
transactions 1004 based on the data marking signals 1006. In
some embodiments, the marking signals 1006 are directly
received and determined by the monitor 808 from the inter-
face 222. Alternatively, the marking signals 1006 are able to
be determined based on the command signal from the trans-
porter 806 and/or forwarding of the marking signals 1006
from the transporter 806 to the monitor 808. In any case, the
monitor 808 is able to determine when the datasets transmit-
ted on the interface 222 are valid datasets (e.g. when “valid”
is high and/or the data is between the sop and eop) that need
to be sampled and forwarded to the desired component based
on the outcome of the handshake protocol as indicated by the
transporter 806. Additionally, it should be noted that although
FIGS. 10A-10C illustrate the above described three hand-
shake protocol types, it is understood that other types of
handshake protocols are able to be used such a three-way
handshakes with or without flow control or data marking and
other types of handshake protocols as known in the art. Fur-
ther, for each of the processes, the size of the data sampled
(e.g. 32 bits) is able to be determined by the monitor 808
based on the marking signals 1006, indications from the
transporter 806, a default number, or a combination thereof.
Testbench Builder Application

The testbench application is able to comprise an input
module, an agent generation module, an interconnection
module, a test case module and user interface for interacting
with the application. The input module is configured to input
interface data (e.g. an interface file) that describes the inter-
faces 222 associated with the DUT 212 for testing the DUT
212. For example, a single interface file is able to be input by
the input module, wherein all of the agents are able to be
generated and if necessary customized based on the single
interface file such that each interface associated with the DUT
212 is described in the interface file. In some embodiments,
the interface data is able to comprise an extensible markup
language (XML) file. Alternatively, the interface data is able
to comprise other types of file formats. In some embodiments,
the input module enables a user to manually input interface
data. Alternatively or in addition, the input module is able to
automatically generate interface data based on an input DUT
data. For example, based on the inputs, outputs and protocols
associated with the DUT 212, the input module is able to
determine a necessary number of interfaces, type of interfaces
(input, output, both), protocol and/or transaction format asso-
ciated with each interface, and or other information about
each of the interfaces that are necessary for testing the DUT
212. The interface data is able to comprise one or more of a

US 9,330,227 B1

25

number of needed interfaces, a name of all the ports in the
interface, a width of each port (e.g. number of bits), whether
each port is a control or data port, a direction of the port (e.g.
input or output) with respect to the DUT 212, a transaction
class of each of the interfaces and/or a transporter class of
each of the interfaces. Alternatively, the interface data is able
to omit the transporter class and/or transaction class of one or
more of the interfaces, which indicates that the interface has
a default transporter and/or transaction class.

The transaction class is able to indicate what types of data
stimulus or transactions that the interface 222 and/or DUT
212is able to understand. In other words, the transaction class
is a representation of the DUT interface in a higher level of
abstraction. As a result, the sequencer 214 of the agent 206
associated with the interface 222 is able to utilize stimulus
data that is of the indicated transaction class for the interface
222 in the interface data. The transporter class is able to
indicate what communication protocol or format (e.g. hand-
shake) that the interface 222 and/or DUT 212 require for
communication. For example, the transporter class is able to
be one of a two-way handshake, delayed or destination flow
control (DFC), one-way handshake (no flow control), or other
types of communication protocol as are known in the art. In
some embodiments, the default transporter class is a two-way
handshake such that the generic agents 206 will be automati-
cally configured to use the two-way handshake communica-
tion protocol. Alternatively, a different one of the transporter
classes are able to be assigned as the default class that each
non-customized agent utilizes. The transporter class is able to
determine which of the handshake protocols that the trans-
porter 506 of an agent 500 is configured to use for the asso-
ciated interface 222.

The agent generation module is configured to generate
each agent 206 necessary forthe DUT 212 based on interfaces
222 indicated in interface data input by the input module.
Specifically, the agent generation module generates a generic
or default agent 206 for each of the interfaces 222 indicated in
the interface data inputted by the input module. These generic
agents 206 are able to each comprise a driver, a sequencer and
a monitor that are configured to use a default protocol and
default transaction class. In some embodiments, the generic
driver of the agents 206 is substantially similar to the generic
driver 504 such that it does not handle any handshake protocol
between the agent 206 and the interface 222. If necessary
based on the interface data, the agent generation module is
then able to customize the generic agents based on the inter-
face data of the interface associated with each generic agent.
For example, the agent generation module is able to deter-
mine the transaction and/or transporter class for the interface
222 and configure the sequencer 214 to operate based on the
transaction class and/or configure the driver 220 and monitor
216 to operate based on the transporter class. Additionally, in
some embodiments the customization comprises creating a
transporter 506 configured to use the handshake protocol
associated with the transporter class and thereby operate with
the driver 504 as described above with reference to FIG. 5. As
a result, each of the agents 206 are able to be automatically
generated for and customized based on each interface 222
necessary to test the DUT 212. In other words, the agents 206
that do not need to be customized are generated and imme-
diately ready to operate based on the default transaction and
transporter types and the agents 206 that do need to be modi-
fied are able to be simply reset to a non-default transaction
and/or transporter class and then are ready to operate with the
associated interfaces 222. For example, a non-customized
agent 206 is able to utilize a driver 504 that operates without

25

40

45

26

or independent of a transporter 506 and does not utilize a
handshake protocol or uses a default handshake protocol.

In some embodiments, the agent generation module is able
to sort all types of interfaces 222 into one of the three trans-
porter classes or handshake protocols such that the set of
transporter classes is able to only include the three handshake
protocols regardless of the number of different types of inter-
faces 222 required for the DUT 212. In some embodiments,
the agent generation module generates the generic agents 206
for all of the interfaces 222 and then customizes one or more
of'the agents 206 as necessary based on the associated inter-
face 222. Alternatively, the agent generation module is able to
generate a generic agent 206 and customize the generic agent
206 if necessary based on the associated interface 222 before
generating the next generic agent 206 for the next interface
222. In some embodiments, the agent generation module
instantiates the agents 206 within the environment 204 after
all the agents 206 have been generated and/or customized.
Alternatively, the agent generation module instantiates each
of'the agents 206 within the environment 204 after the agent
206 has been generated and/or customized. In some embodi-
ments, the agent generation module is able to dynamically
change the transaction and/or transporter class of one or more
agents 206 within the verification environment 204 without
creating a new testbench 202. For example, a user is able to
enter commands to add, subtract and/or modify one or more
of'the agents 206 using the user interface and the agent gen-
eration module is able to implement the changes to the agents
206 within the environment 204 automatically. As aresult, the
testbench builder application provides the benefit of auto-
matically creating generic and customized agents 206 for
each interface 222 necessary to test a DUT 212.

The interconnection module is configured to generate a
verification environment 204 for the testbench 202. Specifi-
cally, the interconnection module generates a reference
model 208 and a scoreboard 210 and integrates and instanti-
ates the reference model 208, the scoreboard 210, the ports,
the interfaces 222 and all of the agents 206 into the verifica-
tion environment 204. Further, this integration is able to com-
prise establishing interconnections between the reference
model 208, the scoreboard 210, the agents 206, DUT 212 and
the interfaces 222 via the ports (e.g. RTL ports). In particular,
the interconnection module is able to couple the ports of the
DUT 212 with the interfaces 222. For example, if one or more
of the agents 206 comprise loopback ports, the interconnec-
tion module is able to couple one or more of the agents 206
together via the loopback ports. As described above, this
loopback port coupling is able to be based on the dependency
of'the testing data associated with each of the agents 206 with
respect to testing the DUT 212. In particular, the interconnec-
tion module is able to automatically couple the loopback
ports of any combination of agents 206 whose testing data has
adependency relationship such that via the loopback connec-
tions all the agents 206 with the depended upon testing data
send the associated dependency datato all the agents 206 with
testing data that is dependent on the depended upon testing
data. Indeed, in some embodiments the dependent relation-
ships of the agents 206 is able to be automatically determined
based on the interface parameters such that the loopback port
coupling is able to be automatically performed by the inter-
connection module based on the interface configuration file.
The interconnection module is also able to register each of the
interfaces 222 in a configuration database with a unique string
or other identifier such that each interface 222 is able to be
used by one or more components (e.g. agents, scoreboard,
monitor) within the environment 204 via a string or unique
identifier based lookup in the configuration database. More-

US 9,330,227 B1

27

over, in some embodiments the interconnection module is
able to bind the output/input of one or more of the agents 206
to one or more other agents 206 within the environment 204.

The test case module is configured to generate one or more
random or predefined test cases for generating stimulus data
for testing the DUT 212 with the testbench 202. For example,
the test case module is able to generate a sample test based on
the DUT 212 and/or interface data for testing the DUT 212
once the testbench 202 has been generated. The user interface
is configured to provide users a graphical user interface for
issuing commands to the testbench 202 and/or the testbench
builder application. For example, a user is able to specify a
test case based on which stimulus data is used to test the DUT
212, a user is able to adjust the reference module 208 opera-
tion in order to reflect changes in the desired operation, and/or
auser is ableto add, subtract and/or modify one or more of the
agents 206 via the transaction and/or transporter class values
as desired. In particular, as described above, the testbench
builder application is able to dynamically change the test-
bench 202 and/or verification environment 204 (without cre-
ating a whole new testbench) based on such commands
received from the user interface. It should also be noted that
the testbench builder application is also able to dynamically
change the testbench 202 and/or verification environment 204
(without creating a whole new testbench) based on changed
interface datareceived by the input module. In either case, the
testbench builder application provides the benefit of being
able to dynamically change a testbench 202 without recreat-
ing the verification environment 204 and/or one or more of'its
components (e.g. agents).

FIG. 3 illustrates a method of generating a test bench
according to some embodiments. As shown in FIG. 3, a test-
bench builder application reads an interface configuration file
associated with a DUT 212 at the step 302. The testbench
builder application then identifies one or more interfaces 222
associated with the DUT 212 defined in the interface configu-
ration file at the step 304. Based on the identified interfaces
222, the application generates a verification environment 204
within the testbench 202 including a base agent 206 for each
of the interfaces 222 in the interface configuration file at the
step 306. In some embodiments, the generating of the verifi-
cation environment further comprises generating one of more
of the group comprising a reference model 208, a dispatcher
1124 and a scoreboard 210. In some embodiments, the char-
acteristics of the base agents 206 are predefined independent
of the interface configuration file. For example, if the base
agents 206 are associated with interfaces 222 that do not
require any customization, the application is able to apply
default settings to the transporter and/or transaction class of
the base agents 206 independent of the interface configura-
tion file. These base agents 206 have default settings that
enable them to operate within the verification environment
204 without customization.

Based on interface parameters of the interface configura-
tion file, the application is able to customize one or more of
the base agents 206 that are associated with the described
interface parameters at the step 308. As a result, the custom-
ized base agents 206 are able to meet the transporter and/or
transaction class needs of the interface 222 with which they
are associated. Then the application instantiates the custom-
ized base agents 206 in the verification environment 204 at the
step 310. This instantiation is able to further comprise instan-
tiation of one or more of the group comprising the base agents
206, the scoreboard 210, the reference module 208 and the
dispatcher 1124, and the coupling/binding of all of the agents
206, interfaces 222, the DUT 212, the scoreboard 210, dis-
patcher 224 and/or the reference module 208 together as

10

15

20

25

30

35

40

45

50

55

60

65

28

desired via one or more ports. In particular, the instantiation
and/or generation of the dispatcher 224 is able to comprise
coupling all the agents 206 to one of the ports of the dis-
patcher 224 and generating the agent table 226 which asso-
ciates the agents/interfaces/ports that are coupled to the dis-
patcher 224 with the scoreboard 210 or the reference model
208 as described above. For example, the agent table 226 is
able to associate the addresses of the ports that receive the
data from the agents 206 with the address of the port coupled
to the scoreboard 210 or the address of the port coupled to the
reference model 208. In some embodiments, the interface
parameters for each of the interfaces 222 comprise names of
the ports associated with the interface, width of the ports
associated with the interface, direction of the ports associated
with the interface, and whether each of the ports associated
with the interface is for communicating control data or non-
control data. Additionally, in some embodiments the agent
table 226 is generated by the builder application based on the
interface parameters and the binding of the ports within the
verification environment.

FIG. 4 illustrates a block diagram of an exemplary test-
bench builder device 102 configured to implement the test-
bench builder application 103 according to some embodi-
ments. The testbench builder device 102 is able to acquire,
store, compute, communicate and/or display information
such as images and videos. In general, a hardware structure
suitable for implementing the device 102 includes a network
interface 402, a memory 404, a processor 406, /O device(s)
408, a bus 410 and a storage device 412. Alternatively, one or
more of the illustrated components are able to be removed or
substituted for other components well known in the art. The
choice of processor is not critical as long as a suitable pro-
cessor with sufficient speed is chosen. The memory 404 is
able to be any conventional computer memory known in the
art. The storage device 412 is able to include a hard drive,
CDROM, CDRW, DVD, DVDRW, flash memory card or any
other storage device. The testbench builder device 102 is able
to include one or more network interfaces 402. An example of
a network interface includes a network card connected to an
Ethernet or other type of LAN. The 1/O device(s) 408 are able
to include one or more of the following: keyboard, mouse,
monitor, display, printer, modem, touchscreen, button inter-
face and other devices. Testbench builder application(s) or
module(s) 103 used to generate the testbench as described
above are able to be stored in the storage device 412 and/or
memory 404 and processed as applications are typically pro-
cessed. More or less components shown in FIG. 4 are able to
be included in testbench builder device 102. In some embodi-
ments, testbench builder hardware 420 is included. Although
as shown in FIG. 4 the testbench builder device 102 includes
applications 103 and hardware 420 for implementing the
testbench generation, it is understood that the testbench
builder device 102 is able to be implemented on a computing
device in solely hardware, firmware or software, or any com-
bination thereof.

In some embodiments, the testbench builder application(s)
103 include several applications and/or modules. In some
embodiments, the testbench builder application(s) 103
include a separate module for each of the graphical user
interface features described above. The modules implement
the method described herein. In some embodiments, fewer or
additional modules are able to be included. Examples of
suitable computing devices include a personal computer, a
laptop computer, a computer workstation, a server, a main-
frame computer, a handheld computer, a personal digital
assistant, a cellular/mobile telephone, a smart appliance, a
gaming console, a digital camera, a digital camcorder, a cam-

US 9,330,227 B1

29

era phone, an iPod®, a video player, a DVD writer/player, a
Blu-ray® writer/player, a television, a home entertainment
system or any other suitable computing device.

The testbench builder system, method and device
described herein provides numerous advantages. In particu-
lar, the builder provides the advantage of automatically cre-
ating a fully operational testbench based on inputted interface
data. Additionally, the builder provides the advantage of
enabling the dynamic adjustment of the testbench via the user
interface or a modified interface file without having the fully
recreate a new testbench. Moreover, the builder provides the
advantage of automatically generating generic agents for
interfaces that do not require a customized agent thereby
increasing the speed of the testbench generation process.
Further, the testbench system provides the benefit of enabling
the generic drivers to be generated independent of the inter-
face characteristics such as handshake protocol. Additionally,
the dispatcher provides the benefit of reducing the connection
complexity of the verification environment. In particular, the
dispatcher provides a single component that all the agents are
able to be coupled and automatically send data to instead of
each agent needing a separate connection established to either
the reference model or a single line to the scoreboard. As a
result, the dispatcher is able to efficiently route the data either
on a single connection to the reference model or a single line
to the scoreboard. Moreover, the loopback ports provide the
advantage of enabling testing data dependency to be handled
on an agent level without the use of a top level multi-layer or
virtual sequencer. Also, the use of timestamps provides the
advantage of enabling the each of the agents to adjust for
latency within the verification environment without the use of
a virtual or multilayer sequencer.

While the invention has been described with reference to
numerous specific details, one of ordinary skill in the art will
recognize that the invention can be embodied in other specific
forms without departing from the spirit of the invention. Thus,
one of ordinary skill in the art will understand that the inven-
tion is not to be limited by the foregoing illustrative details,
but rather is to be defined by the appended claims.

We claim:
1. A testbench system stored on a non-transitory computer
readable medium for testing operation of a device under test,
the testbench system comprising:
a plurality of agents coupled with the device under test,
wherein one or more of the plurality of agents are con-
figured to output one or more transactions to the device
under test and a different one or more of the plurality of
agents are configured to input one or more device
responses to the transactions from the device under test;
and
a dispatcher including an agent table and coupled with a
reference model, a scoreboard and the plurality of
agents, wherein the dispatcher is configured to:
input data comprising a copy of each of the one or more
transactions and the one or more device responses to
the transactions;

identify whether each portion of the data is one of the
copies of each of the one or more transactions or one
of the device responses based on the agent table; and

route each portion of data identified as one of the copies
of each of the one or more transactions to the refer-
ence model and each portion of data identified as one
of'the one or more device responses to the scoreboard.

2. The system of claim 1, wherein the reference model is
configured to mimic a desired function of the device under

20

25

40

45

50

55

65

30

test by producing a reference response to each ofa copy ofthe
one or more transactions based on the desired function and the
transaction.

3. The system of claim 2, wherein the scoreboard is
coupled with the reference module and configured to receive
each of the reference responses from the reference model and
for each transaction compare the associated reference
response to the associated device response.

4. The system of claim 3, wherein in the agent table each of
the plurality of agents is associated with either the reference
model if the agent is one of the one or more of the plurality of
agents that are configured to output the transactions to the
device under test or the scoreboard if the agent is one of the
different one or more of the plurality of agents that are con-
figured to input the device responses from the device under
test.

5. The system of claim 4, wherein the dispatcher deter-
mines if data inputted is a copy of the copies of the transaction
or one of the device responses by identifying whether the
scoreboard or the reference model is associated with the agent
of the plurality of agents that sent the data within the agent
table.

6. The system of claim 5, wherein none of the plurality of
agents are coupled to the scoreboard or the reference model.

7. The system of claim 6, wherein each of the plurality of
agents comprise a monitor configured to sample the transac-
tions and the device responses on an interface between the
agent and the device under test and to automatically forward
the sampled transactions and device responses to the dis-
patcher.

8. The system of claim 7, wherein each of the plurality of
agents comprise a sequencer configured to produce a trans-
action for testing the device under test and a generic driver
coupled with the sequencer, wherein the driver is configured
to receive the transaction from the sequencer.

9. The system of claim 8, wherein each of the plurality of
agents comprise a transporter coupled with the monitor and
the driver and coupled with the device under test via the
interface, wherein the transporter is configured to perform a
handshake protocol with the device under test over the inter-
face based on a class of the interface.

10. The system of claim 9, further comprising one or more
additional agents coupled with one or more of the plurality of
agents, wherein the one or more of the plurality of agents are
configured to send data received from the device under test to
the one or more additional agents.

11. The system of claim 10, wherein the handshake proto-
col comprises one of the group consisting of a one-way hand-
shake protocol without destination flow control, a two-way
handshake protocol and a one-way handshake protocol with
destination flow control.

12. The system of claim 11, wherein the handshake proto-
col of the transporter of at least one of the plurality of agents
is different than the handshake protocol of the transporter of
a different one of the plurality of agents.

13. The system of claim 12, wherein the device under test
is a virtual emulation of an electronic device.

14. A testbench builder for generating a testbench for veri-
fication of a device under test, wherein the testbench builder
is stored on a non-transitory computer readable medium and
configured to perform a method comprising:

reading an interface configuration file associated with the

device under test and identifying a plurality of interfaces
associated with the device under test defined in the inter-
face configuration file; and

generating a verification environment including an agent

for each of the interfaces in the interface configuration

US 9,330,227 B1

31

file, a scoreboard, a reference module and a dispatcher,
wherein each of the agents are coupled with the device
under test, one or more of the agents are configured to
output one or more transactions to the device under test,
and a different one or more of the agents are configured
to input one or more device responses to the transactions
from the device under test, and further wherein the dis-
patcher includes an agent table and is coupled with the
reference model, the scoreboard and the agents, wherein
the dispatcher is configured to:
input data comprising a copy of each of the one or more
transactions and the one or more device responses to
the transactions;
identify whether each portion of the data is one of the
copies of each of the one or more transactions or one
of the device responses based on the agent table; and
route each portion of data identified as one of the copies
of each of the one or more transactions to the refer-
ence model and each portion of data identified as one
of'the one or more device responses to the scoreboard.

15. The testbench builder of claim 14, wherein the refer-
ence model is configured to mimic a desired function of the
device undertest by producing a reference response to each of
a copy of the one or more transactions based on the desired
function and the transaction.

16. The testbench builder of claim 15, wherein the score-
board is coupled with the reference module and configured to
receive each of the reference responses from the reference
model and for each transaction compare the associated refer-
ence response to the associated device response.

17. The testbench builder of claim 16, wherein in the agent
table each of the plurality of agents is associated with either
the reference model if the agent is one of the one or more of
the plurality of agents that are configured to output the trans-
actions to the device under test or the scoreboard if the agent
is one of the different one or more of the plurality of agents
that are configured to input the device responses from the
device under test.

18. The testbench builder of claim 17, wherein generating
the verification environment comprises generating the asso-
ciations within the agent table based on interface parameters
of the interface associated with the agent as defined in the
interface configuration file.

19. The testbench builder of claim 18, wherein the dis-
patcher determines if the data inputted is a copy of the copies
of the transactions or one of the device responses by identi-
fying whether the scoreboard or the reference model is asso-
ciated with the agent of the plurality of agents that sent the
data within the agent table.

20. The testbench builder of claim 19, wherein none of the
plurality of agents are coupled to the scoreboard or the refer-
ence model.

21. The testbench builder of claim 20, wherein each of the
plurality of agents comprise a monitor configured to sample
the transactions and the device responses on an interface
between the agent and the device under test and to automati-
cally forward the sampled transactions and device responses
to the dispatcher.

22. The testbench builder of claim 21, wherein each of the
plurality of agents comprise a sequencer configured to pro-
duce a transaction for testing the device under test and a
generic driver coupled with the sequencer, wherein the driver
is configured to receive the transaction from the sequencer.

23. The testbench builder of claim 22, wherein each of the
plurality of agents comprise a transporter coupled with the
monitor and the driver and coupled with the device under test
via the interface, wherein the transporter is configured to

10

15

20

25

30

35

40

45

50

55

60

65

32

perform a handshake protocol with the device under test over
the interface based on a class of the interface.

24. The testbench builder of claim 23, further comprising
one or more additional agents coupled with one or more of the
plurality of agents, wherein the one or more of the plurality of
agents are configured to send data received from the device
under test to the one or more additional agents.

25. The testbench builder of claim 24, wherein the hand-
shake protocol comprises one of the group consisting of a
one-way handshake protocol without destination flow con-
trol, a two-way handshake protocol and a one-way handshake
protocol with destination flow control.

26. The testbench builder of claim 25, wherein the hand-
shake protocol of the transporter of at least one of the plurality
of agents is different than the handshake protocol of the
transporter of a different one of the plurality of agents.

27. The testbench builder of claim 26, wherein the device
under test is a virtual emulation of an electronic device.

28. A method of testing a device under test within a veri-
fication environment of a testbench, the method comprising:

inputting data from a plurality of agents within the verifi-

cation environment with a dispatcher, wherein the plu-
rality of agents are coupled with the device under test,
one or more of the plurality of agents are configured to
output one or more transactions to the device under test,
and a different one or more of the plurality of agents are
configured to input one or more device responses to the
transactions from the device under test, and further
wherein the data comprises a copy of each of the one or
more transactions and the one or more device responses
to the transactions;

identifying with the dispatcher whether each portion of'the

data is one of the copies of each of the one or more
transactions or one of the device responses based on the
agent table; and

routing, with the dispatcher, each portion of data identified

as one of the copies of each of the one or more transac-
tions to a reference model and each portion of data
identified as one of the one or more device responses to
a scoreboard.

29. The method of claim 28, wherein the reference model is
configured to mimic a desired function of the device under
test by producing a reference response to each ofa copy ofthe
one or more transactions based on the desired function and the
transaction.

30. The method of claim 29, wherein the scoreboard is
coupled with the reference module and configured to receive
each of the reference responses from the reference model and
for each transaction compare the associated reference
response to the associated device response.

31. The method of claim 30, wherein the dispatcher com-
prises an agent table and in the agent table each of the plural-
ity of agents is associated with either the reference model if
the agent is one of the one or more of the plurality of agents
that are configured to output the transactions to the device
under test or the scoreboard if the agent is one of the different
one or more of the plurality of agents that are configured to
input the device responses from the device under test.

32. The method of claim 31, further comprising identifying
whether the scoreboard or the reference model is associated
with the agent of the plurality of agents that sent the data
within the agent table with the dispatcher in order to deter-
mine if the data inputted is a copy of the copies of the trans-
actions or one of the device responses.

33. The method of claim 32, wherein none of the plurality
of agents are coupled to the scoreboard or the reference
model.

US 9,330,227 B1

33

34. The method of claim 33, wherein each of the plurality
of'agents comprise a monitor configured to sample the trans-
actions and the device responses on an interface between the
agent and the device under test and to automatically forward
the sampled transactions and device responses to the dis-
patcher.

35. The method of claim 34, wherein each of the plurality
of agents comprise a sequencer configured to produce a trans-
action for testing the device under test and a generic driver
coupled with the sequencer, wherein the driver is configured
to receive the transaction from the sequencer.

36. The method of claim 35, wherein each of the plurality
of'agents comprise a transporter coupled with the monitor and
the driver and coupled with the device under test via the
interface, wherein the transporter is configured to perform a
handshake protocol with the device under test over the inter-
face based on a class of the interface.

37. The method of claim 36, wherein at least one of the
plurality of agents is configured to send the device responses
received from the device under test to one or more additional
agents within the verification environment.

38. The method of claim 37, wherein the handshake pro-
tocol comprises one of the group consisting of a one-way
handshake protocol without destination flow control, a two-
way handshake protocol and a one-way handshake protocol
with destination flow control.

39. The method of claim 38, wherein the handshake pro-
tocol of the transporter of at least one of the plurality of agents
is different than the handshake protocol of the transporter of
a different one of the plurality of agents.

40. The method of claim 39, wherein the device under test
is a virtual emulation of an electronic device.

#* #* #* #* #*

10

15

20

25

30

34

